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New method for the quantum ground states in one dimension
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Abstract

A simple, general and practically exact method is developed to calculate the ground states of 1D macroscopic quantum systems with translational
symmetry. Applied to the Hubbard model, a modest calculation reproduces the Bethe Ansatz results.
© 2006 Elsevier B.V. All rights reserved.
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Since the very beginning of the quantum theory, to solve
the Schrödinger equation for macroscopic quantum systems has
been one of the main tasks of theoretical physics. It would
not be an exaggeration to say that, due to lack of such meth-
ods, a considerable effort of theoretical physicists has been
devoted to the development of a variety of perturbative and ap-
proximate methods and numerical simulations. But a desire for
powerful non-perturbative methods has grown stronger over the
last couple of decades with the list of phenomena played by
strongly correlated electrons getting longer, particularly since
the discovery of high temperature superconductivity in copper
oxides [1]. While we have seen a considerable progress in rig-
orous treatment of quantum 1D and classical 2D systems over
the last several decades [2–9], these rigorous methods are not
flexible enough to solve non-integrable models in one dimen-
sion, nor, most probably, generalizable to higher dimensions.
On the other hand, the method of NRG (numerical renormaliza-
tion group), particularly DMRG (density matrix RG) has seen a
remarkable success first in quantum 1D systems [10] and then
in finite Fermi systems, competing well with the conventional
quantum chemistry calculations [11]. More recently, the notion
of entanglement from quantum information theory [12] helped
a further progress in NRG towards the finite temperature as well
as dynamical quantities [13–15].
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In a recent Letter, we have developed a simple, general
and practically exact method to calculate statistical mechani-
cal properties of macroscopic classical systems with transla-
tional symmetry up to three dimensions [16]. We here extend
this method to solve the Schrödinger equation for 1D quan-
tum ground states with translational symmetry. As a benchmark
model for this development, we consider the Hubbard model.
Just like our recent work on the 3D Ising model, our method
is purely algebraic and other than seeking a convergence in en-
tanglement space, it does not employ any other notions such as
NRG, nor make any approximations. Our results for the ground
state energy and the local magnetic moment in the 1D Hub-
bard model agree with the known exact results by Bethe Ansatz
[8,17]. An important difference of the present method from the
Bethe Ansatz, however, should be emphasized: the new method
is not rigorous but mathematically much simpler, general and
therefore readily applicable to any quantum spins, fermions and
bosons. This is a reflection of the fact that our recent method
for the Ising model is applicable to any classical statistical sys-
tems with translational symmetry. Yet another but probably the
most significant remark here is that the success in 1D Hubbard
model should constitute an essential ingredient in the analysis
of the 2D Hubbard model by the present method. Again, this is
a reflection of the fact that our recent method for the 3D Ising
model crucially relies on the successful analysis of the 2D Ising
model, we called it the “Russian doll” structure, and the math-
ematical structure involving the D = 2,3 Ising models and that
for the D = 1,2 Hubbard models are essentially identical.
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The Hubbard model is defined by the Hamiltonian,

(1)H = −t
∑
σ,〈ij〉

(
c

†
iσ cjσ + h.c.

) + U
∑

i

ni↑ni↓

where t is the transfer integral, a measure of kinetic energy, U is
the onsite Coulomb potential and ciσ , c

†
iσ are the annihilation

and creation operators for electrons at site i and spin σ . We
take t as the energy unit. To calculate the ground state of the
Schrödinger equation

(2)HΨ = EΨ

we follow the following steps.
First, instead of (2), consider the eigenvalue problem for the

density matrix

(3)e−βH Ψ = e−βEΨ.

A well-known observation about (3) is that, starting with a trial
wavefunction Ψ which has non-zero overlap with the ground
state, only the ground state survives in the limit β → ∞.
Monte Carlo and NRG simulations are based on this observa-
tion [10,18]. Here our idea goes opposite, β → 0, and calculate
the largest eigenvalue of the operator 1 − βH and correspond-
ing eigenstate.

Second, we rewrite the Hamiltonian (1) as a sum of a local
bond Hamiltonian,

(4)H =
∑
bond

(Hij + Hi + Hj) ≡
∑
bond

Hbond,

with

(5)Hij = −t
∑
σ,〈ij〉

(
c

†
iσ cjσ + h.c.

)
,

(6)Hi = U

2
ni↑ni↓ − μ

2
(ni↑ + ni↓)

where the onsite Coulomb term is split into two sites i and j ,
and the chemical potential μ is introduced to control the elec-
tron number per site.

Third, we note a decomposition of the density matrix,

e−βH =
∏
bond

e−βHbond +O
(
β2)

(7)≈ e−β
∑

even Hbonde−β
∑

odd Hbond .

This is the simplest Suzuki–Trotter decomposition [19], but it
is good enough for β → 0. In (7), following the procedure fa-
miliar in quantum Monte Carlo, we have split the entire bonds
into two groups: one connecting the sites (2i,2i + 1), the even
group, and the other (2i + 1,2i + 2), the odd group. Now the
local bond density matrix should be further decomposed as,

e−βHbond ≈ e−βHi e−βHj e−βHij

≈
[

1 − βU

2
ni↑ni↓ + βμ

2
(ni↑ + ni↓)

]
· [i → j ]

+ βt
∑
σ

(
c

†
iσ cjσ + h.c.

)

(8)≡ Ωα ⊗ Θα

where and below the repeated indices imply a summation, and
Ωα takes five operators, 1 − βU

2 ni↑ni↓ + βμ
2 (ni↑ + ni↓), c

†
i↑,

ci↑, c
†
i↓, and ci↓ and Θα likewise operators at site j . Since the

local pair density matrix (8) contains even number of creation
and annihilation operators, the matrix representation of the den-
sity matrix (7) can be written as a operator product of local
matrices,

(9)〈lk|e−βHbond |ij 〉 ≈ fα,ik ⊗ gα,jl

where

f1 = g1 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 βμ/2 0 0

0 0 βμ/2 0

0 0 0 −βU/2 + βμ

⎞
⎟⎟⎟⎠ ,

f2 = √
βt

⎛
⎜⎜⎜⎝

0 0 0 0

1 0 0 0

0 0 0 0

0 0 −1 0

⎞
⎟⎟⎟⎠ ,

g2 = √
βt

⎛
⎜⎜⎜⎝

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

⎞
⎟⎟⎟⎠ ,

etc., where four basis states at each site are ordered as |0〉, |↑〉,
|↓〉 and |↑↓〉. Note that the −1 in the f2 matrix is due to the
fermion anticommutation algebra. Thus the matrix product rep-
resentation of the even group bonds in the density matrix is,

(10)· · ·fα ⊗ gα ⊗ fβ ⊗ gβ ⊗ fγ ⊗ gγ · · ·
and the same expression for the odd group bonds with one lat-
tice shifted from the even group case. Putting together, we have
the matrix representation of the density matrix (7) as,

K ≡ · · · ⊗ gα · fβ ⊗ fγ · gβ ⊗ gγ · fδ ⊗ fε · gδ ⊗ gε · fν ⊗ · · ·
(11)≡ · · ·Γ 1

αβ ⊗ Γ 2
βγ ⊗ Γ 1

γ δ ⊗ Γ 2
δε · · · ,

where for notational simplicity, we have raised the indices 1,2
for the two Γ s to their shoulders. Note also that Γ

1,2
αβ are 4 × 4

matrices for each pair of interaction indices (α,β). Thus, Γ 1,2

are a set of 52 × 42 numbers which will be denoted below like
Γ

1,2
abcd , where (a, b) indicates (up, down) interaction channels,

whereas (c, d) indicates (left, right) basis states.
Fourth, we write the ground state wavefunction as,

(12)Ψ = · · · ζ 1
αβa1

⊗ ζ 2
βγ a2

⊗ ζ 1
γ δa3

⊗ ζ 2
δεa4

· · ·
on the basis · · · |a1〉 ⊗ |a2〉 ⊗ |a3〉 ⊗ |a4〉 ⊗ · · · where a1, etc.,
takes 4 states |0〉, |↑〉, |↓〉 and |↑↓〉. One can derive the form
(12) by a successive use of matrix algebra [16]. Consider,
for example, a wave function Ψ (a1a2a3a4). Regarding this
as a matrix of the left index a1 and the right index {a2a3a4},
SVD (singular value decomposition) gives Ψ (a1a2a3a4) =∑

α Aa1αραB{a2a3a4}α . The quantity B can in turn be regarded
as a matrix of the left index {a2α} and the right index {a3a4},
thus SVD gives B{a2a3a4}α = ∑

β C{a2α}βλβD{a3a4}β . Likewise,
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