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We present a theory of the dynamic magnetic susceptibility of quantum spin liquid. The obtained
results are in good agreement with experimental facts collected on herbertsmithite ZnCu3(OH)6Cl2 and
on heavy-fermion metals, and allow us to predict a new scaling in magnetic fields in the dynamic
susceptibility. Under the application of strong magnetic fields quantum spin liquid becomes completely
polarized. We show that this polarization can be viewed as a manifestation of gapped excitations when
investigating the spin-lattice relaxation rate.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Landau Fermi liquid (LFL) theory is highly successful in the
condensed matter physics. The key point of this theory is the exis-
tence of fermionic quasiparticles defining the thermodynamic, re-
laxation and dynamic properties of the material. However, strongly
correlated Fermi systems encompassing a variety of systems that
display behavior not easily understood within the Fermi liquid the-
ory and called non-Fermi liquid (NFL) behavior. A paradigmatic
example of the NFL behavior is represented by heavy-fermion
(HF) metals, where a quantum phase transition (QPT) induces a
transition between LFL and NFL [1,2]. QPT can be tuned by dif-
ferent parameters, such as the chemical composition, the pres-
sure, and the magnetic field. Magnetic materials, in particular
copper oxides and organic insulators, are interesting subjects of
study due to a quantum spin liquid (QSL) that can emerge when
they approach QPT and are cooled to low temperature T . Ex-
otic QSL is formed with such hypothetic particles as fermionic
spinons carrying spin 1/2 and no charge. A search for the ma-
terials is a challenge for condensed matter physics [3]. The ex-
perimental studies of herbertsmithite ZnCu3(OH)6Cl2 and the or-
ganic insulator EtMe3Sb[Pd(dmit)2]2 have discovered gapless ex-

* Corresponding author at: Petersburg Nuclear Physics Institute, Gatchina 188300,
Russia.

E-mail address: vrshag@thd.pnpi.spb.ru (V.R. Shaginyan).

citations, analogous to excitations near the Fermi surface in HF
metals, indicating that ZnCu3(OH)6Cl2 and EtMe3Sb[Pd(dmit)2]2
are the promising systems to investigate their QPTs and QSLs
[4–14]. The observed behavior of the thermodynamic properties
of ZnCu3(OH)6Cl2 strongly resembles that in HF metals since a
simple kagome lattice being strongly frustrated has a dispersion-
less topologically protected branch of the spectrum with zero ex-
citation energy [14–17]. This indicates that QSL formed by the
ideal kagome lattice is located on the ordered side of the fermion
condensation quantum phase transition (FCQPT) that is charac-
terized by the presence of the spectrum with zero excitation
energy [2]. This observation allows us to establish a close con-
nection between QSL and HF metals whose HF systems are lo-
cated near FCQPT and, therefore, exhibiting an universal scaling
behavior [2,14,17]. As we are dealing with the real 3D com-
pound ZnCu3(OH)6Cl2 rather than with the ideal 2D kagome lat-
tice, we have to bear in mind that the magnetic interactions
and the presence of layers of nonmagnetic Zn2+ ions separat-
ing magnetic kagome planes in the substance can shift the QSL
from the initial point, positioning it in front of or behind FC-
QPT. Therefore, the actual location has to be established by an-
alyzing the experimental data. As a result, the location coincides
with that of HF metals, and turns out to be at FCQPT [14,17], as
it is shown in Fig. 1. Thus, FCQPT can be considered as QPT of
ZnCu3(OH)6Cl2 QSL and both herbertsmithite and HF metals can
be treated in the same framework, so that QSL is composed of
fermions and these with zero charge and spin σ = ±1/2 occupy
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Fig. 1. (Color online.) T –B phase diagram of QSL and HF liquid. The vertical and
horizontal arrows, crossing the transition region depicted by the thick lines, show
LFL–NFL and NFL–LFL transitions at fixed B and T , respectively. At temperatures
T < T ∗ and magnetic field B < B∗ shown by the dash-dot arrows the effective mass
M∗ � const and the system in the LFL region. The dash line continuing the thick line
represents the transition region provided the system were located at FCQPT shown
by the arrow.

the corresponding Fermi sphere with the Fermi momentum pF

[2,14,17]. The ground state energy E(n) is given by the Lan-
dau functional depending on the quasiparticle distribution func-
tion nσ (p), where p is the momentum. In spite of numerous ex-
perimental facts collected in measurements of inelastic neutron
scattering spectrum and spin-lattice relaxation rates on herbert-
smithite, a theoretical understanding of how the dynamical spin
susceptibility of QSL behaves on approaching QPT and how it is af-
fected by external parameters, such as the magnetic field, is still
missing.

In this Letter we employ the Landau transport equation to con-
struct the dynamical spin susceptibility. We elucidate how the
calculated susceptibility is affected by magnetic field and describe
experimental facts collected on herbertsmithite and heavy-fermion
metals. The obtained results are in good agreement with the facts
and allow us to predict a new scaling emerging under the appli-
cation of magnetic field in the dynamic susceptibility. Taking into
account that QSL becomes completely polarized in strong magnetic
fields, we show that this polarization can be seen as the presence
of gapped excitations when investigating the spin-lattice relaxation
rate.

2. Dynamic spin susceptibility of quantum spin liquid and
heavy-fermion metals

To construct the dynamic spin susceptibility χ(q,ω, T ) =
χ ′(q,ω, T )+ iχ ′′(q,ω, T ) as a function of momentum q, frequency
ω and temperature T , we use the model of homogeneous HF liq-
uid located near FCQPT [2]. To deal with the dynamic properties
of Fermi systems, one can use the transport equation describing a
slowly varying disturbance δnσ (q,ω) of the quasiparticle distribu-
tion function n0(p), and n = δn + n0. We consider the case when
the disturbance is induced by the application of external magnetic
field B = B0 + λB1(q,ω) with B0 being a static field and λB1 a
ω-dependent field with λ → 0. As long as the transferred energy
ω < qpF /M∗ � μ, where M∗ is the effective mass and μ is the
chemical potential, the quasiparticle distribution function n(q,ω)

satisfies the transport equation [18]

(qvp − ω)δnσ − qvp
∂n0

∂εp

∑
σ1p1

fσ ,σ1(pp1)δnσ1(p1)

= qvp
∂n0

∂εp
σμB(B0 + λB1). (1)

Here μB is the Bohr magneton and εp is the single-particle spec-
trum. We assume that B0 is finite but not so strong to lead to
the full polarization of the corresponding quasiparticle band. In
the field B0, the two Fermi surfaces are displaced by opposite
amounts, ±B0μB , and the magnetization M = μB(δn+ − δn−),
where the two spin orientations with respect to the magnetic field
are denoted by ±, and δn± = ∑

p δn±(p). The spin susceptibility
χ is given by χ = ∂M/∂ B |B=B0

. In fact, the transport equation (1)
is reduced to two equations which can be solved for each direc-
tion ± and allows one to calculate δn± and the magnetization.
The response to the application of λB1(q,ω) can be found by ex-
panding the solution of Eq. (1) in a power series with respect to
M∗ω/qpF . As a result, we obtain the imaginary part of the spin
susceptibility

χ ′′(q,ω) = μ2
B
ω(M∗)2

2πq

1

(1 + F a
0)2

, (2)

where F a
0 is the dimensionless spin antisymmetric quasiparticle in-

teraction [18]. The interaction F a
0 is found to saturate at F a

0 � −0.8
[19,20] so that (1 + F a

0) is positive. It is seen from Eq. (2) that the
second term is an odd function of ω. Therefore, it does not con-
tribute to the real part χ ′ and forms the imaginary part χ ′′ . Taking
into account that at relatively high frequencies ω � qpF /M∗ � μ
in the hydrodynamic approximation χ ′ ∝ 1/ω2 [21], we conclude
that the equation

χ(q,ω) = μ2
B

π2(1 + F a
0)

M∗pF

1 + iπ M∗ω
qpF (1+F a

0)

, (3)

produces the simple approximation for the susceptibility χ and
satisfies the Kramers–Kronig relation connecting the real and
imaginary parts of χ .

To understand how can χ ′′ and χ given by Eqs. (2) and (3),
respectively, depend on temperature T and magnetic field B , we
recall that near FCQPT point the effective mass M∗ depends on T
and B , and is given by the Landau equation (LE) [2,22]. The in-
teraction function F of LE is completely defined by the fact that
the system has to be at FCQPT. The sole role of F is to bring the
system to FCQPT, where the Fermi surface alters its topology so
that M∗ acquires T and B dependencies [2,23,24]. At FCQPT, LE
can be solved analytically: At B = 0, the effective mass depends
on T

M∗(T ) � aT T −2/3. (4)

At finite T , the application of magnetic field B drives the system
to the LFL region with

M∗(B) � aB B−2/3. (5)

Here aT and aB are constants. At finite B and T near FCQPT, the
solutions of LE can be well approximated by a simple universal
interpolating function. The interpolation occurs between the LFL
(M∗(T ) ∝ const) and NFL (M∗(T ) ∝ T −2/3) regions. It is convenient
to introduce the normalized effective mass M∗

N and the normalized
temperature T N dividing the effective mass M∗ by its maximal val-
ues, M∗

max, and temperature T by Tmax at which the maximum
occurs. The normalized effective mass M∗

N = M∗/M∗
max as a func-

tion of the normalized temperature y = T N = T /Tmax is given by
the interpolating function [2]

M∗
N(y) ≈ c0

1 + c1 y2

1 + c2 y8/3
. (6)

Here c0 = (1 + c2)/(1 + c1), c1 and c2 are fitting parameters,
making M∗

N (y = 1) = 1. Magnetic field B enters LE only in the
combination μB B/kB T , making kB Tmax � μB B where kB is the
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