
Physics Letters A 373 (2009) 735–740

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Harmonic balancing approach to nonlinear oscillations of a punctual charge
in the electric field of charged ring

A. Beléndez a,∗, E. Fernández b, J.J. Rodes a, R. Fuentes b, I. Pascual b

a Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain
b Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 November 2008
Received in revised form 5 December 2008
Accepted 18 December 2008
Available online 31 December 2008
Communicated by A.R. Bishop

Keywords:
Nonlinear oscillator
Harmonic balance method
Approximate frequency

The harmonic balance method is used to construct approximate frequency–amplitude relations and
periodic solutions to an oscillating charge in the electric field of a ring. By combining linearization of
the governing equation with the harmonic balance method, we construct analytical approximations to
the oscillation frequencies and periodic solutions for the oscillator. To solve the nonlinear differential
equation, firstly we make a change of variable and secondly the differential equation is rewritten in a
form that does not contain the square-root expression. The approximate frequencies obtained are valid
for the complete range of oscillation amplitudes and excellent agreement of the approximate frequencies
and periodic solutions with the exact ones are demonstrated and discussed.
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1. Introduction

The purpose of this short communication is to determine the high order periodic solutions to the oscillations of a charge in the electric
field of a charged ring by applying the harmonic balance method [1–9]. To do this, we use the analytical approach developed by Lim
and Wu [2,3] in which linearization of the governing equation is combined with the harmonic balance method. This is an example of a
strongly nonlinear oscillator for which the linearization of the governing equation is only valid for very small values of the displacement.
To our best knowledge, this is the first time the harmonic balance method is applied to this type of nonlinear oscillator.

2. Solution procedure

We consider a ring of radius R with a charge Q > 0 spread uniformly around the ring. The electric field E on the axis (say the x-axis)
of the ring is given by

E(x) = 1

4πε0

Q x

(R2 + x2)3/2
(1)

where x is the distance along the axis. If a negative punctual charge q = −|q| is placed at a point on the ring axis, the charge will
experience a force

F (x) = − 1

4πε0

|q|Q x

(R2 + x2)3/2
. (2)

The equation of motion of the punctual charge q is given by the following nonlinear differential equation

m
d2x

dt2
+ 1

4πε0

|q|Q x

(R2 + x2)3/2
= 0 (3)

with initial conditions

x(0) = x0 and
dx

dt
(0) = 0. (4)
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Even though an oscillating electric charge, because of its acceleration, continuously radiates and dissipates energy [10], we suppose that
the fractional change of the total energy per oscillation due to radiation is negligibly small.

Eq. (3) can be written as follows

1

R

d2x

dt2
+ ω2

0

(
1 + x2

R2

)−3/2 x

R
= 0 (5)

where

ω0 =
√

|q|Q

4πε0mR3
. (6)

Two dimensionless variables y and τ can be constructed as follows

x = R y and t = ω0τ . (7)

Substituting these dimensionless variables into Eq. (4) gives

d2 y

dτ 2
+ y

(1 + y2)3/2
= 0 (8)

with initial conditions

y(0) = A and
dy

dτ
(0) = 0 (9)

where A = x0/R , being x0 the initial position of the punctual charge q.
Eq. (8) is an example of a conservative highly nonlinear oscillatory system in which the restoring force has an irrational form. All the

motions corresponding to Eq. (8) are periodic; the system will oscillate within symmetric bounds [−A, A], and the angular frequency ω
and corresponding periodic solution of the nonlinear oscillator are dependent on the amplitude A.

For small x, Eq. (8) approximates that of a linear harmonic oscillator

d2 y

dτ 2
+ y = 0 (10)

so, for large A, we have ω ≈ 1. For large x, Eq. (8) approximates that of a truly nonlinear oscillator

d2 y

dτ 2
+ sgn(y)

y2
= 0 (11)

and ω tends to zero when A increases.
It is difficult to solve nonlinear differential equations and, in general, it is often more difficult to get an analytic approximation than

a numerical one for a given nonlinear oscillatory system [1,11]. There are many approaches for approximating solutions to nonlinear
oscillatory systems. The most widely studied approximation methods are the perturbation methods [1]. The simplest and perhaps one
of the most useful of these approximation methods is the Lindstedt–Poincaré perturbation method, whereby the solution is analytically
expanded in the power series of a small parameter. To overcome this limitation, many new perturbative techniques have been devel-
oped. Modified Lindstedt–Poincaré techniques, homotopy perturbation method or linear delta expansion are only some examples of them.
A recent detailed review of perturbation methods can be found in Refs. [11] and [12].

The harmonic balance method is another procedure for determining analytical approximations to the periodic solutions of differential
equations by using a truncated Fourier series representation [1]. This method can be applied to nonlinear oscillatory systems where the
nonlinear terms are not small and no perturbation parameter is required. Since the restoring force is an odd function of y, the periodic
solution y(τ ) has the following Fourier series representation [1]

y(τ ) =
∞∑

n=0

h2n+1(A) cos
[
(2n + 1)ωe(A)τ

]
(12)

which contains only odd multiples of ωeτ . In Eq. (12), ωe is the exact frequency of the nonlinear oscillator. The purpose of the harmonic
balance method is to approximate the periodic solution in Eq. (12) by a trigonometric polynomial [1]

y(τ ) ≈
N∑

n=0

b2n+1(A) cos
[
(2n + 1)ω(A)τ

]
(13)

and determine both the coefficients b2n+1 and the approximate angular frequency ω as a function of A. The different approximation orders
are obtained by choosing N = 0 (first-order—one harmonic, cosωτ ), N = 1 (second-order—two harmonics, cosωτ and cos 3ωτ ), . . . , in
Eq. (13).

The main objective of this research is to solve Eq. (8) by applying the harmonic balance method, and to compare the approximate
frequency obtained with the exact one. The approximate frequency derived here is accurate and closer to the exact solution. To do this,
Eq. (8) is rewritten in a form that does not contain the square-root expression

(
1 + y2)3

(
d2 y

dτ 2

)2

− y2 = 0. (14)
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