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A one-dimensional discrete conservative Hamiltonian with a generalized form of the Schmidt potential,
is constructed with the help of a non-integrable discrete Hamiltonian whose parametrized double-well
potential can be reduced to the φ4 potential. The new conservative Hamiltonian is completely integrable
in the discrete static regime, and the associate exact nonlinear solution is shown to coincide with the
continuum nonlinear periodic solution of the non-integrable Hamiltonian. Numerical simulations and
nonlinear stability analysis suggest that the discrete mapping derived from the completely integrable
Hamiltonian undergoes a bifurcation which does not leads to the chaotic phase with randomly pinned
states, but instead to a phase where real solutions become rare forming a cluster of periodic points
around an elliptic fixed point.
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1. Introduction

One-dimensional (1D) discrete nonlinear conservative systems
show a wealth of fascinating features that make their interest
[1–3]. In particular, the variety of phase patterns due to the in-
terplay of lattice discreteness and on-site potential provides rich
insight on near-critical phenomena in structural phase transi-
tion processes. Two most attracting among these phase patterns
are modulated structures [2,4] and the so-called spatial chaos
[5–8], they are manifest in several contexts of structural insta-
bilities such as commensurate–incommensurate, ferroelectric and
metal–insulator transitions [2] where randomly pinned states with
chaotic features populate pretransitional phases.

However, while the account of all phase patterns is relevant
to a global understanding of discrete conservative systems from
a theoretical standpoint, real contexts exist where only few of
them interplay. For systems undergoing structural transitions with-
out chaotic precursors, modulated structures are most relevant so
that obtaining periodic solutions of the associate discrete nonlin-
ear Hamiltonians can be far more useful in the characterization of
their ordered phases.
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In recent years, two main approaches emerged in attempts to
construct integrable discrete models. In one [9–14] of them, one
seeks for the potential admitting the continuum kink of a given
generic potential as exact discrete solutions, and in the other a
judicious discretization of the continuum equation of motion is
done [14–17]. The first approach has demonstrated high efficiency
in the study of critical processes in discrete conserved energy sys-
tems, in addition the resulting discrete map has a standard topol-
ogy characteristic of discrete conservative Hamiltonians [2] unlike
artificially discretized equations [14–17] which give rise to non-
standard mappings. Concerning the discrete φ4 model, Jensen et al.
[9] established that the associate continuum periodic kink was un-
pinned in a discrete system based on the Schmidt potential [18].
They pointed that the discrete 2D mapping of the Schmidt Hamil-
tonian displayed a period-doubling bifurcations but without the
infinite cascade to a spatially chaotic regime.

In this Letter, following closely Ref. [9], we construct a spa-
tial chaos-free discrete Hamiltonian from a non-integrable discrete
double-well Hamiltonian [19,20]. The generic double-well model is
member of a family of parametrized double-well potential (PDWP)
models [21–24] admitting exact continuum kink solutions. In view
of the fact that it reduces exactly to the φ4 in a specific limit,
constructing the equivalent completely integrable discrete Hamil-
tonian is of fundamental importance for bistable systems that the
φ4 model may not adequately describe from both quantitative and
qualitative points of view.
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2. The integrable discrete static Hamiltonian

The total Hamiltonian of a 1D chain of N harmonically coupled
identical atoms with a one-body potential is given by:

H =
N∑

n=1

[
K

2
(un+1 − un)2 + Vμ(un)

]
, (1)

where un is the relative displacement of the nth atom from its
commensurate position. The equilibrium configurations of the lat-
tice that result from the interplay of the interatomic interaction
and the on-site potential Vμ(un), are determined by minimizing
the Hamiltonian (1) with respect to un leading to the following set
of discrete difference equations:

un+1 − 2un + un−1 − 1

K
V ′

μ(un) = 0, V ′
μ(un) ≡ ∂Vμ(un)

∂un
. (2)

We choose an on-site potential with the following double-well
shape [19,20]:

Vμ(u) = aμ

2

[
1

μ2
sinh2(αμu) − 1

]2

, μ �= 0, (3)

where:

αμ = arsinh(μ), aμ = aμ2

(1 + μ2)arsinh2(μ)
, (4)

with μ the deformability parameter. Note that in a strict sense
the quantity a/2 in (4) represents the bare magnitude of the φ4

potential barrier. However, to keep a one-to-one correspondence
with the φ4 model studied in Ref. [9] we shall also set K ≡ 1.

In a previous study [20], we discussed the Peierls–Nabarro
problem for the discrete equation (2) with the PDWP (3), (4). Then,
we established that its exact continuum kink solution was pinned
to the lattice structure, and derived the Peierls–Nabarro potential
whose height was dependent on μ. The variation of the Peierls–
Nabarro barrier with the deformability that we obtained, showed
that the pinning effect was always sizeable to empede transla-
tional invariance of the parametric continuum kink in the discrete
medium.

In the present work, we wish to construct a discrete Hamil-
tonian for which the continuum periodic kink structure of equa-
tion (2) with the PDWP (3), (4) is an exact solution free from the
Peierls–Nabarro effect. In this purpose, it is useful to first obtain
the analytical expression of this continuum periodic kink solution.
Thus, applying the continuum limit approximation on (2) in the
weak dispersion regime, then integrating the resulting continuum
equation with periodic boundary conditions we find:

u(n) = 1

αμ
tanh−1[uμ sn qμ(x − xo)

]
, x ≡ n�, (5)

where � is the lattice spacing, sn is the Jacobi elliptic function
and κ will be used to designate the associate modulus. The quan-
tity uμ , and the size dμ = 1/qμ of individual kinks in the periodic
kink lattice (5), are defined as:

uμ = β

√
1 + 8β2ζ

1 + 8β4ζ
u0(κ), qμ =

√
1 + 8β2ζq0(κ), (6)

with β = μ/
√

1 + μ2,

u0(κ) = κ

√
2

1 + κ2
, �q0(κ) =

√
2a

1 + κ2
. (7)

The constant of first integral, i.e. the parameter ζ in (6), is ex-
pressed in terms of the modulus κ of the Jacobi elliptic function
as:

Fig. 1. Variation in κ of the constant of first-integral ζ . From the lowest to the upper
curve in the range 0 � κ � 1: μ = 2, 1, 0.5, 0.1.

ζ = 8κ2β2 − (1 + κ2)2(1 + β4) − (1 + κ2)(1 − β2)Fμ(κ)

16β4(1 − κ2)2
, (8)

Fμ(κ) =
√(

1 + κ4
)(

1 + β2
)2 + 2κ2

(
1 − 6β2 + β4

)
. (9)

According to Fig. 1, irrespective of the value of μ the parame-
ter ζ increases with increasing κ in the negative branch. It reaches
its maximum value of zero at κ = 1, a limit where the periodic
kink lattice sharpens into a single kink with shape extending from
x → −∞ to x → ∞. It is also instructive to stress that when
μ → 0, i.e. when the parametrized potential becomes the φ4 po-
tential, the periodic kink solution (5) reduces to the well-known
[9,25] periodic kink solution of the continuum φ4 model.

We now seek for a discrete Hamiltonian with an appropriate
on-site potential Wμ(u) admitting the continuum periodic kink
(5) as exact static solution in the discrete regime. To simplify we
rewrite (5) as:

un = 1

αμ
tanh−1 φn, φn = uμ sn(qμn�). (10)

In terms of this notations Eq. (2) becomes:

tanh−1 φn+1 − 2 tanh−1 φn + tanh−1 φn−1 = αμW ′
μ. (11)

At this step, it is useful to recall the following identities:

tanh−1 x ± tanh−1 y = tanh−1
(

x ± y

1 ± xy

)
, (12)

and [26]

φn±1 = ν1φn ± ν2 cn(qμn�)dn(qμn�)

1 − ν2
3φ2

n
, (13)

ν1 = cn(qμ�)dn(qμ�), ν2 = uμ sn(qμ�),

ν3 = (κ/u2
μ)ν2. (14)

With the help of these identities we get:

φn+1 + φn−1 = 2ν1φn

1 − ν2
3φ2

n
, (15)

1 + φn+1φn−1 = (1 − ν2
2 ) + (1 − ν2

3 )φ2
n

1 − ν2
3φ2

n
, (16)

φn+1 + φn−1

1 + φn+1φn−1
= 2η1φn

1 − η2φ
2
n
. (17)

Ultimately, replacing

cn(qμ�)dn(qμ�) =
√

1 − sn2(qμ�)

√
1 − κ2 sn2(qμ�) (18)

everywhere we find:

W ′
μ(u) = 1

αμ
tanh−1

[
2η1 tanh(αμu)

1 − η2 tanh2(αμu)

]
− 2u, (19)
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