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In this Letter, singular hybrid coupled systems are introduced to describe complex networks with a
special class of constraints. The synchronization problem of singular hybrid coupled systems with time-
varying nonlinear perturbation is investigated. A sufficient condition for global synchronization is derived
based on the Lyapunov stability theory. The singular system is regular and impulse free. Finally, a numer-
ical example is provided to illustrate the effectiveness of the proposal conditions.
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1. Introduction

In the past decades, complex dynamical networks have become
a popular research subject and are attracting more and more at-
tention from many fields of scientific research. Examples of com-
plex networks include the World Wide Web, the Internet, electrical
power grids, food webs, biological neural networks, telephone cell
graphs, coauthorship and citation networks of scientists, etc. The
universality of complex networks naturally stimulates the current
intensive study of the subject. In the study, one of the basic and
significant characteristics is the synchronization of all dynamical
nodes in a complex network. In fact, synchronization is a ubiqui-
tous phenomenon in nature. Roughly speaking, if two systems have
something in common, then a synchronization may occur between
them when they interact. As a result, the synchronization of cou-
pled dynamical networks has become a focal point in researching
complex networks [1–7].

It is worthwhile to mention that we usually have to consider
some algebraic constraints of complex networks in modeling the
real world problems. For instance, communication resources are
always limited and required to be allocated to different levels of
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privileged users. Hence, special constraints are needed in the re-
source allocation process. Constructing a complex network model
with a set of constraints is necessary and indispensable. However,
we will encounter two kinds of difficulties:

Q 1) How to construct a complex network model with a set of
constraints for a special class of networks?

Q 2) How to investigate those properties such as stability, syn-
chronization and robust stability for a given complex network with
constraints?

It is a challenging task to answer the above two questions since
it is very difficult to give an explicit expression for complex net-
works with a set of constraints. In addition, under a set algebraic
constraints, one do not know whether the solutions exist, not to
mention of the stability or synchronization of the solutions. There-
fore, in this Letter, our objective is to investigate a special class of
networks and address some interesting issues of the above prob-
lems. Inspired by the Letter [8], we introduce the following singu-
lar hybrid coupled systems in this Letter

Eẋi(t) = Axi(t) + f
(
xi(t), t

) + c
N∑

j=1

bijΓ x j(t),

i = 1,2, . . . , N, (1)

where matrix E may be singular, and 0 < rank(E) = r < n. A ∈
Rn×n is a constant matrix. N is the number of coupled nodes, xi =
(xi1, xi2, . . . , xin)T ∈ Rn are state variables of node i, f (xi(t), t) ∈
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Rn is vector-valued time-varying nonlinear function. The constant
c > 0 denotes the coupling strength, and Γ = diag(γ1, γ2, . . . , γn) ∈
Rn×n is a 0–1 diagonal matrix with specific γi = 1 and 0 for oth-
ers. B = (bij)N×N denotes the coupling configuration of the entire
network. If there is a connection between node i and node j, then
bij = b ji = 1 (i �= j); otherwise, bij = b ji = 0 (i �= j). Define the di-
agonal elements of matrix B such that

bii = −
N∑

j=1, j �=i

bi j = −
N∑

j=1, j �=i

b ji, i = 1,2, . . . , N.

Generally, we also call model (1) as the singular complex net-
works. Without loss of generality, let matrix E = ( Ir 0

0 0

)
with Ir is a

r × r identity matrix, system (1) can be written

ẋ(1)
i (t) = A1x(1)

i (t) + A2x(2)
i (t) + f1

(
xi(t), t

) + c
N∑

j=1

bijΓ1x(1)
j (t),

i = 1,2, . . . , N, (2)

and

0 = A3x(1)
i (t) + A4x(2)

i (t) + f2
(
xi(t), t

) + c
N∑

j=1

bijΓ2x(2)
j (t),

i = 1,2, . . . , N, (3)

where matrix A = ( A1 A2
A3 A4

)
, xi(t) = ((x(1)

i (t))T , (x(2)
i (t))T )T with

x(1)
i (t) ∈ Rr, x(2)

i (t) ∈ Rn−r , f (xi(t), t) = ( f T
1 (xi(t), t), f T

2 (xi(t), t))T

with f1(xi(t), t) ∈ Rr, f2(xi(t), t) ∈ Rn−r , and Γ = diag(Γ1,Γ2) with
Γ1 ∈ Rr×r,Γ2 ∈ R(n−r)×(n−r) .

Obviously, the singular systems (1) are equivalent to models
(2) satisfying conditions (3). Here, systems (2) are still considered
as hybrid coupled networks and Eqs. (3) are a set algebraic con-
straints of models (2). Moreover, the constraints in (3) also consist
of nonlinear terms. As a result, a kind of complex network models
is constructed with a set of algebraic constraints. Hence, we have
given one possible answer to question Q 1.

In fact, singular systems give a more general description of
physical systems than the normal one (i.e., E = I , full rank). And
for this reason, many studies have extended concepts and results
from the regular systems theory into the realm of singular systems
[8–18]. However, most of the authors only discussed the stability of
linear singular systems [10,14–18] rather than the nonlinear prop-
erties. The reasons are that of nonlinear singular systems is very
difficult and complicated when the system regularity and impulse
elimination are needed to be considered. In recent years, there
are some breakthroughs in nonlinear singular systems. In [8,9], the
authors discuss the stability for the following continuous-time sin-
gular system with time-varying nonlinear perturbations:

Eẋ(t) = Ax(t) + f
(
x(t), t

)
. (4)

It should be noted that, the above model (4) is a special case of
system (1).

It is well known that there are tremendous difficulties in in-
vestigating some global properties of complex networks due to
the inherent complexity issues, not to mention of those of sin-
gular complex networks for the system regularity and impulse
elimination. Moreover, the introduction of nonlinear perturbation
f (xi(t), t) in model (1) is a general issue to be dealt with in com-
plex networks, and yet it is a more difficult problem in singular
complex networks. Therefore, our purpose of this work is to dis-
cuss the synchronization of singular hybrid coupled systems (1)—to
give an answer to question Q 2.

Notation: Throughout this Letter, I stands for the identity ma-
trix. The superscript “T ” represents the transpose. For ∀x =

(x1, x2, . . . , xn)T ∈ Rn , the notation ‖x‖ = (
∑n

i=1 x2
i )

1
2 . For a ma-

trix A, λm(A) and λM(A) denote the minimal and maximal eigen-
values of matrix A respectively. ‖A‖ denotes the spectral norm

defined by ‖A‖ = (λM(AT A))
1
2 . For real symmetric matrices X and

Y , X > Y (or X � Y ) means that matrix X − Y is positive definite
(or positive semidefine).

2. Main results

In the Letter, it is assumed that system (1) is connected in the
sense that there are no isolated clusters, i.e., matrix B is an ir-
reducible matrix. With the assumption, we obtain that zero is an
eigenvalue of B with multiplicity 1 and all the other eigenvalues of
B are strictly negative, which are denoted by 0 = λ1 > λ2 � λ3 �
· · · � λN .

Definition 1. The singular network in (1) is said to achieve asymp-
totic synchronization if

x1(t) = x2(t) = · · · = xN (t) = s(t), as t → +∞, (5)

where s(t) satisfies the equation Eṡ(t) = As(t) + f (s(t), t).
Following [2], we let x̄(t) = 1

N

∑N
i=1 xi(t), ei(t) = xi(t)− x̄(t), i =

1,2, . . . , N . The singular system (1) can be written as

Eėi(t) = Aei(t) + f
(
xi(t), t

) − f̄ + c
N∑

j=1

bijΓ e j(t),

i = 1,2, . . . , N, (6)

where f̄ = 1
N

∑N
l=1 f (xl(t), t). Next, the objective is to find a con-

dition to ensure the solutions of singular system (6) are globally
asymptotically stable about ei(t) = 0, i = 1,2, . . . , N .

Model (6) can be written as

Eė(t) = Ae(t) + F
(
e(t), t

) + cΓ e(t)BT , (7)

where e(t) = (e1(t), e2(t), . . . , eN(t)), F (e(t), t) = ( f (x1(t), t) − f̄ ,
f (x2(t), t) − f̄ , . . . , f (xN (t), t) − f̄ ). Since B is a symmetric ma-
trix, there exists a unitary matrix w = (w1, w2, . . . , w N ) ∈ RN×N

such that B = wΛw T with w w T = I and Λ = diag(λ1, λ2, . . . , λN).
Let y(t) = e(t)w , along with (7), one has

E ẏ(t) = Ay(t) + F
(
e(t), t

)
w + cΓ y(t)Λ, (8)

where y(t) = (y1(t), y2(t), . . . , yN(t)), yi(t) = e(t)wi ∈ Rn, i = 1,

2, . . . , N . Then, model (8) can be rewritten

E ẏi(t) = Ayi(t) + F
(
e(t), t

)
wi + cλiΓ yi(t)

= (A + cλiΓ )yi(t) + F
(
e(t), t

)
wi . (9)

Assumption 1. Assume that there exist nonnegative constants Li j
such that ‖ f (xi(t), t) − f (x j(t), t)‖ � Li j‖x j(t) − xi(t)‖, i �= j, i, j =
1,2, . . . , N .

Assumption 2. There exist matrices Pi such that

E T Pi = P T
i E � 0, i = 1,2, . . . , N, (10)

and

AT P1 + P T
1 A < 0, (A + cλiΓ )T P i + P T

i (A + cλiΓ ) � −ηi I,

i = 2,3, . . . , N, (11)

where ηi > 4L
N (N − 1)‖Pi‖, L = ∑N

i=1 Li, Li = ∑N
l=1,l �=i Lil .
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