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Abstract

For the excitation of a subshell 2s electron of Ne, we investigate the autoionizing spectrum of 2s22p5 2P1/2ns,nd and 2s2p6 2S1/2np Rydberg
series by means of R-matrix theory and QB method. We predict the autoionizing energy and width of four Rydberg series.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

With the advent of third-generation synchrotron radiation fa-
cilities and recent improvements in their resolution [1], it is
now possible to study higher-order photoionization processes
in greater experimental detail. Among these are two-electron
processes, which require going beyond the single-electron pic-
ture and considering further the interaction between atomic
electrons.

In a pioneering work of neon excitation, Codling et al. [2]
measured the absorption spectrum at photon energies from 44 to
64 eV. Higher-resolution photoionization experiments in VUV
energy range have been conducted for rare-gas atom [2–5];
a comprehensive review of many experimental aspects can be
found in Ref. [1]. In 1996, Schula et al. reported the exper-
imental and theoretical study of ground-state photoionization
of neon in the photon energy range between 44 and 53 eV. In
present Letter we use R-matrix theory and combine with the
QB method to study the singly and doubly excited resonances
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of neon, and predict the energy and autoionizing width of four
Rydberg series of neon.

2. Theory

We use R-matrix theory [6] to determine the energy varia-
tion of the eigenphase analytically rather than numerically, and
use QB [7] method to determine the resonance position and res-
onance widths for doubly excited states of neon.

R-matrix theory starts by partitioning configuration space
into two regions by a sphere of radius a centred on the centre-of
mass and chosen in such a way as to effectively enclose the tar-
get electrons. When the colliding electron is within this sphere,
a many-body Schrödinger equation must be solved. In the ex-
ternal region the system reduces to a two-body problem. The
connection between these two regions is via the R-matrix.

In the internal region the total wavefuction Ψ (E) at energy
E is expanded in terms of antisymmetrized energy-independent
R-matrix basis states ψk

(1)Ψ (E) =
∑

k

Ak(E)ψk, r < a.

Let Fi(r) and wik(r) be the projections of Ψ and ψ respectively
onto each channel. Substituting Eq. (1) into the Schrödinger
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equation and evaluating at the boundary r = a gives the basic
equations of R-matrix theory,

(2)A(E) = ε−1wT R−1F,

(3)R(E) = wε−1wT + RButtle(E),

(4)F(E,a) = RḞ , Ḟ ≡
(

d

dr
− b

a

)
F

∣∣∣∣
r=a

,

where ε(E) is a diagonal matrix whose elements are (Ek − E),
and RButtle(E) is a diagonal matrix containing a correction [8].
The dimension R is n × n, where n is the total number of
channel retained in the closcoupling expansion. The matching
equation on the boundary for the scatting electron radial func-
tion F is given by Eq. (4), where the logarithmic derivative b is
fixed.

In the external region the total wavefunction is expanded in
terms of the channel functions

Ψ (x1 · · ·xN+1) =
∑

i

Φ̄i(x1 · · ·xN ; r̂N+1σN+1)
1

rN+1
Fi(rN+1),

(5)r > a.

Substituting into the Schrödinger equation and projecting
onto the channel yields a set of coupled differential equations
satisfied by Fi(r),

(6)

(
d2

dr2
− li (li + 1)

r2
+ 2z

r2
+ k2

i

)
Fi(r) =

n∑
j=1

Vij (r)Fj (r),

where z = Z − N is the residual target charge, li and k2
i are the

channel angular momenta and energies, and Vij (r) is the po-
tential matrix. In the external region, there are two independent
sets of solutions, S(E, r) and C(E, r), with known asymptotic
forms for r → ∞. Quantities such as reactance (K) and scatter-
ing matrices are obtained on matching the internal region radial
functions F to n×n0 linear combinations of the external region
radial functions S(E, r) and C(E, r), for n0 open channels

(7)F(E, r) = S(E, r) + C(E, r)K(E).

Differentiating and evaluating at r = a and substituting into
Eq. (4) gives

(8)B(E)K(E) = P(E) ⇒ K(E) = B−1(E)P (E),

where

(9)B = +C − RĊ, P = −S + RṠ.

Diagonalizing the K-matrix in the space of the open chan-
nels n0, i.e. let K00 has eigenvalues λi , then

(10)K00X = λX, where XT X = 1,

and λ is diagonal. The eigenphase in each channel is then de-
fined as

(11)δi = tan−1 λi, i = 1, n0,

and the eigenphase sum δ is the sum over Eq. (11). The above
argument concerning a pole in K also applies to λ, and so one
normally fits the eigenphase to a Breit and Wigner [9] form, as

in Tennyson and Noble [10]

(12)δ = δ̄ + tan−1 Γ/2

Er − E
,

where Er is the resonance energy, Γ is the resonance width and
δ̄ is the background.

A resonance position is the energy at which the eigen-
phase sum increases most rapidly, i.e. has maximum gradient
dδ/dE ≡ δ′

(13)δ′(E) =
[

1 +
(

Er − E

Γ/2

)2]−1 1

Γ/2

and this is used by QB method to locate resonances.
Resonance widths Γ are related to the inverse of the eigen-

phase derivate at resonance, as can be seen by differentiating
Eq. (12) and assuming the background gradient δ̄′ < Γ −1 and
setting E = Er

(14)Γ = 2/δ′(Er).

Generalizing to the multichannel case (channel i), the nor-
malized widths Γi , which are related to the autoionization de-
cay rates to each open channel, are

(15)Γi = Γ/δ′
i∑n0

i=1 1/δ′
i

.

Because Eq. (12) is valid strictly for isolated resonances,
we should estimate the perturbation of the width by a nearby
resonance. This can be done by introducing a nonconstant back-
ground δ̄, whose main variation over the width of a resonance
at Er is due to the ‘tail’ of some perturbing resonance at Ep of
width Γp of the form Eq. (13), so that at E = Er

(16)δ̄′(Er) =
[

1 +
(

Ep − Er

Γp/2

)2]−1 1

Γp/2
.

Differentiating Eq. (12) and evaluating at E = Er

(17)
δ′(Er) = δ̄′(Er) + 2/Γ ⇒ Γ = 2/

[
δ′(Er) − δ̄′(Er)

]
.

3. Resonances in Ne above the first threshold

According to the R-matrix theory and the energy region
between 44 and 48.5 eV is dominated by singly excited res-
onances 2s2p6np, which are weakly perturbed by the n = 3,
4, and 5 members of the first doubly excited Rydberg series
2p4(1D)3s(2D)np [11], the elastic and inelastic scattering of
electrons by the three lowest fine-structure levels of the ion Ne+
are

Ne+(
1s22s22p5)2P 0

3/2, Ne+(
1s22s22p5)2P 0

1/2,

Ne+(
1s22s2p6)2Se

1/2,

where the total system of electron plus Ne+ ion is in the 0e or
10 states. The photoionization process corresponds to photoion-
ization from the ground state of Ne leaving the Ne+ ion in one
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