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Construction of bound entangled edge states with special ranks
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Abstract

Relating to a conjecture on the decomposability of positive maps in 3 ⊗ 3, we solve the open problem of the existence of (5,5) and (6,6) PPT
edge states.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The power of entanglement as a physical resource in quan-
tum information and computation has motivated a wide scale
study in the mathematical structure of entanglement. The break-
through came when the Horodecki family [1] linked the ques-
tion of separability to the classification of positive maps in ma-
trix algebras. In the 1960–1980s important progress was made
in the classification of positive maps. A paper by Choi [2] in
1982 reviews the main results until then and basically contains
the skeleton of present entanglement theory.

Let Mn stand for the set of all n×n complex matrices. Prob-
ably the most important result in the theory of positive maps is
that every positive map between M2 and Mn for n � 3 is de-
composable. A decomposable map can be decomposed as the
sum of a completely positive map (CPM) and the combination
of transposition and a CPM. In entanglement theory this trans-
lates to the fact that for all states ρ in Mn ⊗ Mm (nm � 6)

positivity of the partial transposition

(1 ⊗ T )ρ = ρTB � 0

is a necessary and sufficient condition for separability. For
higher dimensions this is not the case and there exist entan-
gled states with a positive partial transposition (PPTES). From a
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mathematical point of view the structure of PPTES in M2 ⊗M4
and M3 ⊗ M3 are therefore of great interest. In the present Let-
ter we are concerned with the latter. Only a handful of examples
are available in this dimension:

(A) The Størmer matrix [3,4].
(B) The Choi matrix [2,5].
(C) The 7-parameter chessboard states [6].
(D) The 6-parameter UPB states in [7] and neighbourhood

[8,9].
(E) The Horodecki matrix [10].
(F) The Ha et al. matrices [11–13]. In matrix structure, these

matrices lie in between (A) and (B).

Construction of PPTES is a non-trivial task, and the UPB
construction is really the only known automatic procedure [14].
The other constructions are very much trial and error and in
the spirit of Pólya’s traditional mathematics professor ‘In order
to solve this differential equation you look at it till a solution
occurs to you’ [15]. Yet, given a PPTES there are several tools
available to show it is entangled:

(i) A first one is the so-called realignment criterion [16–18]
which just like the partial transposition reorders matrix entries.
Here entanglement is guaranteed when the trace norm of the
realigned density matrix is larger than one.
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(ii) A second option is making use of non-decomposable
positive maps, or alternatively non-decomposable entanglement
witness [19]. This method lacks the operational character of the
realignment criterion, as it is non-trivial to prove the positive-
ness of a map. However, we know that every PPTES can be
detected by some entanglement witness and hence this criterion
is a much stronger one than the realignment criterion.

(iii) In Ref. [20] Doherty et al. used entanglement witnesses
to devise a computational algorithm which detects all entangled
states. Furthermore for a given entangled state their algorithm
outputs an entanglement witnesses W detecting that state. This
operator W can always be written in a k-SOS (sum of squares)
form which makes it easy to prove analytically that it is indeed
an entanglement witness (see the original reference for details).

(iv) The range criterion offers a remarkable simple crite-
rion for PPTES with small rank [10,21]. It dictates that for a
state ρ to be separable there must exist a set of product vectors
{|ai〉|bi〉} spanning the range of ρ such that {|ai〉|b∗

i 〉} span the
range of ρT

B . In particular, we say that a state ρ strongly violates
the range criterion if there is no product vector |ai〉|bi〉 in the
range of ρ such that |ai〉|b∗

i 〉 is in the range of ρTB . A state
which strongly violates the range criterion will be called an
edge state in view of the following theorem.

Theorem 1. (Lewenstein et al. [22–27]) (i) A PPTES δ is an
edge state if and only if for all ε � 0 and all separable |ab〉,
δ − ε|ab〉〈ab|
is not positive or does not have a positive partial transpose.

(ii) Every PPTES ρ can be decomposed as

ρ = (1 − p)ρsep + pδ,

with ρsep a separable state and δ an edge state.

This theorem implies that knowledge of edge states is suffi-
cient to characterise PPTES.

In Ref. [28] a study of the Schmidt number of density matri-
ces was made. The Schmidt number [29,30] of a density matrix
is defined as the minimum—over all convex decompositions of
a density matrix into pure states, of the maximum Schmidt rank
in such a decomposition. In particular they conjectured that all
bound entangled states in M3 ⊗ M3 have Schmidt number two.
This can also be casted in the language of 2-positive maps [13].
A 2-positive map is a linear map Λ such that 1 ⊗ Λ(ρ) � 0 for
all Schmidt number two states ρ. It follows that the conjecture
is equivalent to the statement that every 2-positive map between
3 × 3 is positive on PPTES states. To prove this, it is sufficient
to prove it for edge states. In Ref. [28] a proof was presented
for edge states of rank 4. Denoting the rank of ρ by N and the
rank of ρTB by M , they then analysed the situation for edge
states with different ranks (N,M). Unfortunately at the time
they did their analysis, only edge states of dimension (4,4) and
(6,7) were known. Recently, in a very interesting paper [13],
Ha and Kye found edge states for all ranks except (5,5) and
(6,6). The main result of this Letter is the construction of edge
states with rank (5,5) and rank (6,6), respectively (Sections 2

and 3). In the final section we show that our states do not seem
to contradict the original conjecture. For a generalisation of the
conjecture to higher-dimensional systems the reader is referred
to [31].

2. A (5,5) edge PPTES

Consider the following (5,5) state:

ρ(5,5) = 1

13

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 2 −1 0 0 0 0 0 1
0 −1 1 0 0 0 0 0 −1
0 0 0 3 0 −1 −1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −1 0 1 1 0 0
0 0 0 −1 0 1 1 0 0
0 0 0 0 0 0 0 2 −2
0 1 −1 0 0 0 0 −2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and its partial transpose:

ρ
TB

(5,5) = 1

13

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 2 −1 0 0 0 0 0 0
0 −1 1 0 0 0 0 1 −1
0 0 0 3 0 −1 −1 0 1
0 0 0 0 0 0 0 0 0
0 0 0 −1 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 1 0 0 0 0 2 −2
0 0 −1 1 0 0 0 −2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is not so hard to verify that both operators are positive semi-
definite and have rank 5. An analytical expression of their
eigenvectors and eigenvalues is however quite complex. To
show that ρ(5,5) is an edge state we will show that it violates
the strong range criterion. For this we will use the ‘divide and
conquer technique’ from [10].

It is not so hard to see that every vector in the range of ρ(5,5)

can be written in the form

V = (0,A,−E − F,C,0,D,D,E,F ), A,C,D,E,F ∈ C.

Now we have look at those vectors which can be written as a
product

V = (s, t, v) ⊗ (x, y, z) = (sx, sy, sz, tx, ty, tz, vx, vy, vz).

Taking these two conditions together we can therefore charac-
terise all product vectors in the range of ρ(5,5).

From the condition sx = 0 we can distinguish the following
sub cases:

1. x = 0, s �= 0, we have vx = D = 0 = tz and therefore
either t = 0 or z = 0. Without loss of generality we can also put
s = 1.

1.1. t = 0, as v(y +z) = −z we have v = −z/(y +z). When
y = −z, then z = 0 = −y = x and we obtain the null vector.
Thus the only case that remains is

V = s

(
1,0,

−z

y + z

)
⊗ (0, y, z),

with y �= −z.
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