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We propose a simple analytical form of the vapor–liquid equilibrium curve near the critical point for
Lennard-Jones fluids. Coexistence densities curves and vapor pressure have been determined using the
Van der Waals and Dieterici equation of state. In described method the Bernoulli differential equations,
critical exponent theory and some type of Maxwell’s criterion have been used. Presented approach has
not yet been used to determine analytical form of phase curves as done in this Letter. Lennard-Jones
fluids have been considered for analysis. Comparison with experimental data is done. The accuracy of the
method is described.
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1. Introduction

An accurate knowledge of the equilibrium conditions is ex-
tremely important both in industry and science. Analytical form
thermodynamic properties, like for example phase curves under
equilibrium condition, are of special importance in physics, chem-
istry and engineering applications. Up to now several methods
have been proposed to calculate vapor–liquid equilibrium (VLE)
curves, one can distinguish among them theoretical, experimen-
tal and molecular simulation efforts, both for single and binary or
ternary systems [1]. The most commonly used method is that one
based on conventional Maxwell’s procedure [2], which is based
on the principle of equality of areas designated by the isotherm
T < Tc (if the saturated vapor is wavy) at the intersection of the
isobars. In the two-phase region isobars should be chosen so that
the field limited by the curve T = const and the isobars is al-
most equal to zero. We know that the equation of state (EOS) also
enables us to predict many useful thermodynamic properties, for
example the equilibrium phase. Unfortunately, many forms of the
used EOS only allow the approximate nature of the obtained re-
sults and the desired properties. The main reason is that every
EOS operates only within the respective pressures or temperatures,
moreover, constants appearing in every EOS are specific for each
substances. Up to this day it is derived a universal EOS, success-
fully applied to any type of fluid which, applied to describe the
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relationship between pressure, temperature and density, is true for
all the real gases and plays the same role as the Clapeyron equation
used in the ideal gases. This Letter presents a new mathematical
approach to the problem of determining the coexistence curves of
the VLE system.

We therefore pay attention to the method proposed by
Okrasiński et al. [3]. In this method, they couple some type of
Maxwell’s construction with first-order nonlinear differential equa-
tions theory. However, they determined only numerical derivatives
for the phase curves and at temperatures excluded near the critical
point. In this Letter, we calculate the coexistence densities curves
analytically, in very close vicinity of the critical point and pro-
pose useful, mathematically straightforward form of these phase
curves, which can be successfully and easily used to calculate
thermodynamic properties. As a basis of mathematical calcula-
tions there were used well-known and commonly used EOS for
real gases – Van der Waals (VdW) and Dieterici. An analytical form
of coexistence curve is an effect of correlating both, chosen EOS
and method derived in [3], with the law of corresponding states,
one of power laws for the VLE system and finally by solving two
Bernoulli differential equations. As mentioned above we propose a
simple analytical form of these curves and apply one of them (i.e.
vapor density curve) for calculating the vapor pressure. In addition
we apply this method to the Lennard-Jones (LJ) system and hence
simple fluids such as liquid argon and liquid methane have been
considered for analysis.

Besides a model presented by us has the following simplifica-
tion and advantages over that proposed by Okrasiński et al. [3]:
we do not use numerical methods to calculate the derivatives of
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the density liquid and vapor phase. We only use the value of the
critical temperature of analyzed fluids, as the independent vari-
able, which is the result of application of the law of corresponding
states. We also eliminate adjustable parameters (constants con-
tained in the used EOS), which are specific to each substance, by
using the dimensionless variables (see also Section 2). We intro-
duce the so-called deviation parameters to analyze the behavior of
the system near the critical point and we propose an asymptotic
form of EOS used to calculate the reduced parameters, and Taylor’s
theorem.

It should be noted that the model, proposed by us, is simple
to use, permits one to calculate directly coexistence curves (from
only a knowledge of the critical temperature of each substances)
and is applicable only in immediate vicinity of the critical point of
the VLE system. In addition it is in a good agreement with experi-
mental data in the critical region, because usually the liquid phase
densities are predicted to an accuracy of 1 to 2% in a wide temper-
ature range, i.e. from triple point to the critical point. In contrast,
our method gives comparable values (for both liquid and vapor
phase) and works well near the critical region, where the thermo-
dynamic parameters exhibit nonanalytical behavior which is very
difficult to analyze.

We think, that the approach described in this work, may be-
come an alternative method for testing the VLE systems, instead of
so far used method based on Maxwell’s rule.

2. Mathematical form of the coexistence densities curves versus
critical exponent theory

Precise designation of the area in which the phases coexist with
each other is not an easy task both from a mathematical and nu-
merical point of view [4]. This poses many problems not only for
physicists but also chemists and engineers who are trying to de-
termine the properties of the equilibrium, back to the existing EOS
or create new ones (based on experimental data or simulation [5]),
for the analyzed problems.

Usually, to describe the equilibrium Maxwell’s criterion is
used [2]. Mathematical method described in this work is very
general and is an analogue of Maxwell’s method. It requires
only knowledge of form of an analytical formula expressing the
chemical potential μ = μ(ρ, T ) and the functional dependence
P = P (ρ, T ) for the EOS (where the chemical potential, μ and
the pressure, P are analytical functions of density, ρ and temper-
ature, T ) [4–6]. Determination of VLE properties is based on these
two equations and the principle of equality of areas at a given
temperature, which also corresponds to equality of chemical po-
tentials in both phases. This equilibrium corresponds to the two
curves: ρL = ρL(T ) and ρV = ρV (T ) defined in the area below the
critical temperature.

It is known that for any temperature T below the critical Tc ,
the curves ρL = ρL(T ) and ρV = ρV (T ) satisfy the following sys-
tem of equations:

P
(
ρV (T ), T

) = P
(
ρL(T ), T

)
, μ

(
ρV (T ), T

) = μ
(
ρL(T ), T

)
(1)

Differentiating Eqs. (1) with respect to T [3], we can obtain
the differential form of the curves ρ̇L = f (ρL,ρV , T ) and ρ̇V =
f (ρV ,ρL, T ) in the near-critical region (denote the first-order
derivatives of ρL(T ) and ρV (T ) with respect to T ), where func-
tion f is of the form

f (ρV ,ρL, T )

=
( ∂μ

∂T (ρV , T ) − ∂μ
∂T (ρL, T )

)
ρV ρL + (

∂ P
∂T (ρL, T ) − ∂ P

∂T (ρV , T )
)
ρV

∂ P
∂ρ (ρV , T )(ρV − ρL)

(1a)

The right side of Eq. (1a) is regular and hence we can find a
unique solution in the form of curves ρL and ρV for given initial
conditions ρ0

V = ρV (T0), ρ0
L = ρL(T0) and temperature T0 < Tc .

Furthermore, we assume that ρV (T ) < ρL(T ) for T < Tc and the
critical point ρV (Tc) = ρL(Tc) = ρc (where (ρc, Tc) determines the
so-called critical point and ρc and Tc denote the density and criti-
cal temperature, respectively).

In this place we must mention that the expressions (1) and (1a)
allow strictly determination of phase curves in area of their coex-
istence, but the use of many simplifications in the calculation (see
the Introduction and Section 2.1) leads to only obtaining an ap-
proximate formula of coexistence densities curves near the critical
point, with deviations not less than 1.5%, for the test substances.

Usually it is almost impossible to appoint a strict, analytical so-
lution of differential form of curves given by formula (1a), for given
P and μ, and numerical method must be used [7–11]. We mod-
ified method proposed in [3] correlating it with the quantitative
description of the phenomena associated with the phase transi-
tions. Below a simple mathematical way to obtain these curves
(expressed in analytical form) is presented.

2.1. Van der Waals equation – critical exponent theory and coexistence
densities curves

Consider the popular and often used VdW EOS [12] for real
gases in the form

P = RT

V − b
− a

V 2
(2)

where P – pressure, V – volume, R – universal gas constant, a rep-
resents attraction arising from dispersion forces, b accounts for the
volume occupied by the molecules.

Substituting the relation ρ = m/V = 1/V we obtain

P = RTρ

1 − ρb
− aρ2 (3)

At critical temperature, we know that(
∂ P

∂ρ

)
Tc

=
(

∂2 P

∂ρ2

)
Tc

= 0 (4)

hence we determine the critical parameters

ρc = 1

3b
, Pc = a

27b2
= RTc

8b
, Tc = 8a

27bR
(4a)

Using the dimensionless variables

Tr = T

Tc
, Pr = P

Pc
, ρr = ρ

ρc
(5)

determines the so-called reduced VdW EOS (without constants
which are specific for each substances)

Pr = 8Trρr

3 − ρr
− 3ρ2

r (6)

Using the reduced parameters allows meaningful analysis of the
behavior of the investigated system, not only in the two-phase re-
gion, but also in the near-critical region. As seen above (4a), the
reducing parameters are experimentally measured coordinates of
the critical point (temperature, pressure and density respectively).
The correct description of the system near a critical point offers
the so-called deviation parameters

p = Pr − 1, t = Tr − 1, ρ̃ = ρr − 1 (7)

Substituting (7) into (3) we obtain

p = 8(t + 1)(ρ̃ + 1)

(2 − ρ̃)
− 3(ρ̃ + 1)

2 − 1 (8)
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