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Nonlinear processes in magnetized plasma are very much important for the proper understanding of
many space and astrophysical events. One of the most important type of study has been done in the
domain of Alfven waves. Here we show that a Galerkin type approximation of the DNLS (Derivative
Nonlinear Schrödinger) equation describing such wave propagation leads to a new type of nonlinear
dynamical systems, very much rich in chaotic properties. Starting with the detailed analysis of fixed
points and stability zones we make an in depth study of the unstable periodic orbits, which span the
whole attractor. Next the birth of a Hopf bifurcation is identified and normal form, limit cycle analyzed.
In the course of our study the detailed structure of the attractor is analyzed. A possibility of internal crisis
is also indicated. These results will help in the choice of the plasma parameters for the actual physical
situation.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Of late rigorous research activities have been seen to investigate
collective plasma modes in classical and quantum plasmas [1–6].
The inherent nonlinearity of such processes makes it imperative
that a detailed stability analysis is undertaken. One of the most
important class of problems occur in the domain of magnetized
plasma, where the analysis of Alfven waves plays a leading role.
In particular it may be mentioned that the coupling of Alfven–
Langmuir–Whistler waves [7–9] plays a significant role in planetary
magnetosphere. The nonlinear interaction of such waves is still a
very important [10–12] one, and requires a very detailed study
[13–16]. A recent paper by Brodin et al. [17] has studied the three
waves process in a cold magnetized plasma. Also it has been seen
that radio energy bursts from sun can be produced via a nonlin-
ear conversion of Langmuir waves into high frequency electromag-
netic cyclotron pulse, through coupling with similar low frequency
waves. On the other hand, a kinetic Alfven and Whistler wave the-
ory have been proposed by Voitenko and Goossens [15] in this
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respect. So it is very apparent that a sort of three wave interac-
tion process plays a central role in these processes. Here in this
communication we have considered a Galerkin type approxima-
tion [18] of the DNLS equation describing the dynamics of a large
amplitude nonlinear Alfven wave propagating along the ambient
magnetic field, to obtain a new set of nonlinear ordinary differen-
tial equations (ode’s), describing the three wave process. As this
set of equations is highly nonlinear it is very much important to
investigate those set of parameter values which lead to stable or
unstable mode [19–22]. Below we show how the instability is built
up and through the formation of unstable periodic orbits span the
whole chaotic attractor. In this connection, a new branch of insta-
bility is also identified leading to Hopf bifurcation [23–26], whose
detailed structure is exposed via normal form analysis. To start
with we analyze the origin and stability of various fixed points
by the Routh–Hurwitz criterion. Here we observe the transition to
a Hopf bifurcation channel later explored with the help of nor-
mal form. The form of limit cycle is also obtained. Later a detailed
investigation is undertaken to explore the population of unstable
periodic orbits of the attractor by a modified approach of Newton–
Raphson method for flow [27]. Lastly we have used MATCONT [28]
to study the unfolding of bifurcation, with its transition to Hopf
state which shows agreement with the detailed numerical results.
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2. Formulation

The dynamics of large amplitude Alfven waves propagating
along the ambient magnetic field can be described by the DNLS
equation,(

i
∂

∂t
− γ̂

)
B + iα

∂

∂x

(
B|B|2) + β

∂2 B

∂x2
= 0 (1)

here γ̂ is the linear growth or damping, α stands for the sign of
the nonlinearity and β that of dispersion.

The three term Galerkin approximation is done by writing B as

B =
3∑

i=1

Bi(t)exp
{−i(ki x − ωit)

}
(2)

where we assume 2k1 = k2 + k3. From the linear dispersion rela-
tion we have ωi = −βk2

i (i = 1,2,3) and ω2,3 − ω1 = �′
1,2 is the

phase difference. We furthermore represent each complex ampli-
tude Bi(t) as

Bi(t) = Ri(t)exp
{

iθi(t)
}

(3)

i = 1,2,3, while (Ri, θi(t)) are real. To simplify the resulting dy-
namical system equations we impose some conditions on the var-
ious quantities,

R1 = R2, r1 = r2, α = β = −1,

alongwith T = γ0t and k1 ≈ k2 ≈ k3,

a2
1 = k1

γ0
R2

1, a2
2 = k1

γ0
R2

2, γ = −γ1

γ0
,

φ = −ψ, δ = −�′

γ0
(4)

where �′ = (�′
1 + �′

2)/2. So that one gets

ȧ1 = a1 + 2a1a2
2 sin φ,

ȧ2 = −γ a2 − a2
1a2 sin φ,

φ̇ = −2δ + 2
(
a2

2 − a2
1

) + 2
(
2a2

2 − a2
1

)
cosφ (5)

where ȧ1, etc., denote da1/dT and

ψ = 2θ1 − θ2 − θ3 − 2�′t.
Eq. (5) describes the three wave process under consideration.

3. Stability analysis

To start with we observe that the fixed point of Eq. (5) is given
as

a∗
0 =

√
γ

D
; a∗

1 = 1√
2D

; θ∗ = − sin−1(D),

where D is given as

D = (γ − 1)
√

4δ2 − 4γ + 3 − δ(2γ − 1)

2{δ2 + (γ − 1)2}
provided 4δ2 − 4γ + 3 > 0. Furthermore we fix δ = −6 and vary
γ as the bifurcation parameter. The characteristic equation corre-
spondence to this is

f (λ) = λ3 + e1λ
2 + e2λ + e3 = 0 (6)

where

e1 = 2(γ − 1),

e2 = 2γ

D2

(
2D2 + 4 − 3ξ

)
,

e3 = 8γ

D

{
(γ − 1)D − 6ξ

}

with ξ = −12D+2γ −1
2(γ −1)

. By the Routh–Hurwitz criterion the real part
of the roots of Eq. (6) are negative if and only if

e1 > 0, e3 > 0, e1e2 > e3

leading to the restriction 1 < γ < 1.3215. Note that all the coef-
ficients of Eq. (6) are positive for γ > 1. Consequently the insta-
bility arises if there is two complex conjugate zeros, say λ1 = iΩ ,
λ2 = −iΩ , then λ3 = −2(γ − 1) which is on the boundary of the
stability and we obtain the critical value γ = γ0 = 1.3215 and
λ3 = −0.643 < 0. This set of complex eigenvalues leads to Hopf
bifurcation, which we take up in a later section. But here we study
the general structure of the unstable periodic orbits (UPO’s) which
populate the attractor.

Before going to the actual results we briefly describe the
methodology adopted for getting information about the UPO’s.
Though basically it is a variant of the Newton’s method for finding
the fixed points of a Poincaré map, yet some details are given here
for the sake of completeness.

Consider a dynamical system,

ẋ = f (x) (7)

where x = {x1, x2, . . . , xd} is a d-dimensional vector and f =
{ f1(x), f2(x), . . . , fd(x)}. Let Xt(X0) be the flow of (7) for a given
initial condition X0, that is the value of the orbit of X0 at time t .
Let t = σ be the time of a trajectory started in X0 takes to com-
plete one iteration of some Poincaré map, so

X1 = Xσ (X0)

is the next point in the map iteration. The fixed point is a solution
of

Xσ ( X̄) = X̄ .

By Newton’s approach we set

X̄ = X0 + �X

with initial guess X0 close to the desired point and an initial guess
τ0 for the return time of X̄

σ = τ0 + �τ

then Taylor expansion of X yields

Xσ ( X̄) = Xτ0(X0) + ∂ Xτ0(X0)

∂t
�τ + D X Xτ0(X0)�X,

where
∂ Xτ0 (X0)

∂t = f (Xτ0(X0)). Now using Xτ ( X̄) = X̄ = X0 + �X ,
one gets

(I − J )�X − f (X1)�τ = X1 − X0, (8)

where I is the identity matrix, J is the Jacobian to be obtained by
integrating the variational equation

J̇ = D X f (X0) J (9)

along with Eq. (7), with J = I as the initial condition. The solution
X1 of Eq. (7) at each iteration are not necessarily on the Poincaré
section unless a stroboscopic section is used. A possible method to
restrict this is to assume that Poincaré section be given as

(X1 − X0)a = 0 (10)

where a is a vector normal to the plane, X0 is on it. Adding (8) to
(10) guarantees that X1 is always on the plane when we iterate(

I − J − f (X1)

a 0

)(
�X
�τ

)
=

(
X1 − X0

0

)
. (11)

In the present case, we have two bifurcation parameters (γ and δ).
In Fig. 1(a) we have fixed δ to −6.015 and shown the bifurcation
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