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In this Letter the microscopic theory of the relative change in velocity of sound with temperature of
La0.5Ca0.5MnO3 is reported. The phonon Green function is calculated using the Green function technique
of Zubarev in the limit of zero wave vector and low temperature. The lattice model electronic Hamiltonian
in the presence of the phonon interaction with hybridization between the conduction electrons and
the l-electrons is used. The relative change in velocity of sound at various temperatures is studied for
different model parameters namely the position of the l-level, the effective phonon coupling strength
and hybridization strength. The phonon anomalies observed experimentally at different temperatures are
explained theoretically. An abrupt change in velocity at Neel temperature (T N ) is observed clearly. It is
observed that different parameters influence the velocity of sound.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Intense research on experimental and theoretical fronts have been focused on charge-ordered manganites due to the coexistence
of charge, orbital, and spin orderings at various temperatures. Charge-ordered manganites in general show different types of ground
states depending on the dominance of antiferromagnetic (AFM) and/or ferromagnetic (FM) interactions, and Jahn–Teller distortions. The
half-doped Perovskite manganites R0.5 A0.5MnO3 (R = trivalent rare earth ion and A = divalent ion Ca, Sr, Ba) exhibit a wide variety of
magnetic structures and magnetotransport behaviors and have been extensively investigated [1–4]. However, the complex physics behind
these have not been fully comprehended and, therefore, call for further studies. Qualitative explanation is given by the double exchange
(DE) mechanism [5]. At higher doping (x > 0.5), the ground state becomes again an AFM insulator [6,7]. A phase boundary between the
FM metallic and the AFM insulating ground states exists in a narrow range around x = 0.5 [8]. In addition, another intriguing phase, the
charge ordered (CO) state has been found to exist in insulating La1/2Ca1/2MnO3 [9]. A direct evidence of the CO state is provided by the
electron diffraction for La1/2Ca1/2MnO3 [10].

The CO state is characterized by the real space ordering of Mn3+/Mn4+ in mixed valent R1/2 A1/2MnO3. The CO state is expected to
become stable when the repulsive Coulomb interacts between carriers dominates over the kinetic energy of carriers [11]. In this respect,
the electron lattice of the CO state may be viewed as the generalized Wigner crystal. Furthermore, the carriers formed the CO state are
believed to be manifested in some types of polarons, which arise from the strong electron–phonon interaction, possibly, the Jahn–Teller
effect [12]. In fact, ordering of such polarons is occasionally observed in 3d transition metal oxides. Ramirez et al. [8] have observed in
La1−xCaxMnO3 (0.63 < x < 0.67) that the CO transition is accompanied by a dramatic increase (> 10%) in the sound velocity, implying
a strong electron–phonon coupling. Another interesting aspect of the CO state is its relevance to the observed magnetic phases. In the
half-doped LaCa manganites [9,10], the CO state has been realized with FM–AFM transition. The common feature is that the AFM structure
of the specific CE-type [6] is observed in the CO state of manganites, suggesting a nontrivial effect of the CO state on the magnetic phase.
The other noteworthy observation is the transport phenomena of the CO phase in the presence of the magnetic field. The high magnetic
field induces the melting of the electron lattice of the CO phase to give rise to a huge negative magnetoresistance (MR) [13].

In this work, we report the microscopic theory of the velocity in La1/2Ca1/2MnO3. For this purpose we describe the electronic Hamilto-
nian of Kondo lattice model and introduce an electron–phonon interaction in Section 2 and calculate phonon Green function in Section 3.
The results and discussion are showed in Section 4.
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2. Model

We start from the picture the characteristics of the systems with Jahn–Teller (JT) ions with an inter-play between electrons localized
due to lattice distortions and those in the band states. This situation is typical of manganites and could be described in terms of the
Kondo-lattice model in the double exchange limit with account taken for the Jahn–Teller distortions and the super-exchange interaction
between the localized electrons [14]. The intra-atomic exchange coupling is assumed to be large enough to align the spins of eg electrons
in a Mn ion parallel to spin S of core (t2g ) electrons. The Jahn–Teller effect leads to the splitting of the double-degenerate eg level. Then,
following [15], we can divide eg electrons into two groups: “localized” (l, t(l) → 0) producing the maximum splitting of the eg level and
itinerant “band” (b) electrons with nonzero hopping integrals t , leading to smaller distortions of MnO6 octahedra. The corresponding
effective Hamiltonian has the form [14]

Heff = −t
∑
〈nm〉

c+
n cm − εJT

∑
n

nln + J
∑
〈nm〉

cos θnm + U
∑

n

nlnnbn. (1)

Eq. (1) describes the intra-atomic Hubbard interaction between the l-electrons and l–b-electrons, where nli = l+i li and nbi = c+
i ci . We

linearize the on-site l-electron interaction terms l+i li and c+
i ci in the Hamiltonian in the Hartree–Fock approximation as nlinbi → 〈nli〉nbi +

nli〈nbi〉, where 〈nli〉 = 〈l+i li〉, 〈nbi〉 = 〈c+
i ci〉 are the expectation values of nli , nbi and we take 〈nli〉 = nl , 〈nbi〉 = nb for all i. The number of

localized, nli , and band, nbi , electrons of per lattice site obeys an obvious relation nb + nl = 1 − x (x is doping concentration, value is 0.5).
Then Hamiltonian Heff therefore reduces to

Heff = −t
∑
〈i j〉

c+
i c j − εJT

∑
i

nli + J
∑
〈i j〉

cos θi j + U

(∑
i

nlic
+
i ci +

∑
i

l+i linbi

)
, (2)

nbi = c+
i ci ; nli = l+i li , εJT = −g2/2K (where K is the elastic energy and g is the electron-lattice coupling constant).

The Fourier-transformed Hamiltonian of Eq. (2) is written as

Heff = −
∑

k

Ekc+
k ck − E0

∑
k

nlk + J
∑
〈i j〉

cos θi j, (3)

where E0 = εJT + Unb; Ek = εk + Unl; εk = −2t(cos kxa + cos kya + cos kza).
In the event of a large Jahn–Teller distortion resulting in the band splitting (∼ 1 eV) there is the possibility that the lower eg orbital

hybridizes with the localized t2g orbitals which will modify the magnetic ordering of the t2g electrons. Thus the hybridization of the local-
ized electrons with the conduction electrons of band one only is considered, and the Hamiltonian Hν which represents this hybridization
effect is given by

Hν = V
∑

k

(
c+

k lk + l+k ck
)
. (4)

The electron–phonon interaction term in the site representation can be written as

He−p =
∑
k,q

f (q)
[
c+

k+qlk + l+k+qck
](

b+−q + bq
)
. (5)

Where bq (b+
q ) are annihilation (creation) operators for phonons with wave vector q and f (q) is the electron–phonon coupling constant.

The free phonon Hamiltonian with phonon energy ωq is written as

H p =
∑

q

ωqb+
q bq. (6)

The total Hamiltonian of the system then becomes

H = Heff + Hν + He−p + H p . (7)

3. Calculation of phonon Green function

The phonon self-energy is evaluated by the double-time Green function technique of Zubarev [16] using the equation of motion method.
The phonon Green function is defined as:

Dqq′ (t − t′) = 〈〈
Aq(t); Aq′ (t′)

〉〉 = −iΘ(t − t′)
〈[

Aq(t), Aq′ (t′)
]〉
, (8)

where

Aq = bq + b+−q (9)

is the qth Fourier component of the displacement. To derive the phonon Green function Dq,q′ (t − t′). We use the equation of motions for
phonon operators [17]. The equation of motion for the Fourier transformed phonon Green function Dq,q′ (ω) is evaluated for the system
using the total Hamiltonian H as given in Eq. (7). The Green function is expressed as

Dq,q′ = δq,q′ D0
q(ω) + 4 f 2(−q)D0

q(ω)χq,q′ (ω)D0
q(ω). (10)

Where

D0
q(ω) = 2ωq

[
ω2 − ω2

q

]−1
(11)
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