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In this Letter we consider quantum secret sharing (QSS) between a sender and a dynamic agent group,
called dynamic quantum secret sharing (DQSS). In the DQSS, the change of the agent group is allowable
during the procedure of sharing classical and quantum information. Two DQSS schemes are proposed
based on a special kind of entangled state, starlike cluster states. Without redistributing all the shares,
the changed agent group can reconstruct the sender’s secret by their cooperation. Compared with the
previous quantum secret sharing scheme, our schemes are more flexible and suitable for practical
applications.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Secret sharing is an important branch of cryptography, which
has wide applications in information security theory and tech-
nology. Suppose a department supervisor Alice authorizes some
agents, Bob1, Bob2, . . . , Bobn , to act in her name, but she wants
them to take action when they reach unanimous agreement. In this
case, Alice can use secret sharing scheme, and the whole procedure
can be divided into three steps. Firstly, Alice chooses n strings ran-
domly and sends each agent a string. Then Alice encodes secret
message by her key, which is generated by the bitwise exclusive-
OR of all strings, and publishes the ciphertext. At last, all agents
work together to recover Alice’s message.

In 1979, Shamir [1] and Blakley [2] proposed the first secret
sharing schemes, respectively. In realistic situations, the compo-
sition of agent group may change before the final reconstruction
because of individuals’ leaving and joining or groups’ splitting or
combing. In the case of adding a new agent or removing an old
agent, the security of the secret key may become fragile. Hence,
the issue of the member change is very interesting and signifi-
cant in theory and practice. So far, some dynamic secret sharing
schemes, such as schemes with disenrollment capability and pro-
tocols for member expansion [3–7], have been discussed.

Quantum secret sharing (QSS) is the generalization of classi-
cal secret sharing to quantum scenario, and it has been attracting
much attention since 1999. The classical information as well as
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quantum information can be shared by using quantum resource
[8–22]. In addition, some experimental schemes for quantum se-
cret sharing have been demonstrated [23–27]. However, all of the
these quantum schemes have limited flexibility in dealing with the
dynamic joining and leaving of agents. In this Letter, we take into
account this realistic problem and try to solve it.

In classical secret sharing, the agent change can be achieved in
a simple manner. If the ciphertext has not been published, Alice
can add a new agent Bobn+1 by sending a random string to him as
he is an original one, and she also can delete any agent by discard-
ing the corresponding random string. If the encoded message has
been published, the agent change can be performed by following
ways. For adding a new agent Bobn+1, every original agent updates
his string by adding a random bit string of the same length and
sending the random string to Bobn+1. By exclusive-OR all the re-
ceived strings, Bobn+1 obtains his share. If Bobi (1 � i � n) wants
to leave the group, Alice just needs to make Bobi ’s string public.
However, the secure transmission is of the utmost importance. If
an eavesdropper accesses to all of Alice’s transmissions, then he
can learn the contents of her message.

On the basis of quantum mechanics, quantum cryptography can
defeat the eavesdropper in the transmission. Following above ba-
sic idea, a plain dynamic quantum secret sharing (DQSS) scheme,
which consists of the classical scheme and quantum key distribu-
tion (QKD) [28], can be obtained. But it should be pointed out that
many transmissions are needed when a new agent joins the group,
and it may bring the problems of feasibility and complexity.

In this Letter, we propose two efficient DQSS schemes. They are
based on a special kind of multi-particle entangled state, called
“starlike cluster”. This quantum channel was constructed by Chen
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Fig. 1. Starlike cluster. The black node is the center qubit A and Bi Ai , i ∈ {1,2, . . . ,n}
denotes a two-qubit arm.

et al. [29], which consists of one qubit located at the center and n
surrounding two-qubit arms (shown in Fig. 1). This genuine entan-
gled state has been used in the constructions of two-dimensional
and three-dimensional cluster states [29,30]. Recently, the starlike
cluster state is also exploited in Refs. [30,31] for topological one-
way computation. This motivates us to investigate the usefulness
of the state for DQSS. An interesting fact is, as we will see, the
starlike cluster state is very suitable for DQSS.

This Letter is organized as follows. First, in Section 2, we in-
troduce the starlike cluster state. In Section 3.1, we describe the
basic multi-party quantum scheme for sharing a classical bit. Then
we discuss the situation of member changes in Section 3.2. Subse-
quently, we devise scheme for sharing a qubit in Section 4.1 and
give the solutions to the member changes in Section 4.2. Finally,
some discussions and conclusions are given in the last section.

2. Starlike cluster state

Since the starlike cluster state is relevant to the graph theory,
let us begin with the concept of a graph. A graph G = (V , E) is
given by a vertex set V = {1,2, . . . ,m} and an edge set E = {(i, j) |
i, j ∈ V }. The neighborhood of a given vertex i ∈ V , written Ni ,
is defined as the set of vertices j for which (i, j) ∈ E . And G[Ni]
denotes the subgraph of G which consists of vertices Ni and all
edges of G linking two vertices in Ni . When a vertex is deleted,
together with the edges incident with i, the new graph is denoted
with G − {i}. Moreover, E(A, B) = {(i, j) ∈ E: i ∈ A, j ∈ B, i �= j}
denotes the set of edges between sets A, B ⊂ V .

As introduced in Ref. [32], each (undirected, finite) graph G
can be associated with a graph state, and the corresponding graph
state |G〉 is obtained by applying a sequence of controlled-Z gates
CZ = |00〉〈00| + |01〉〈01| + |10〉〈10| − |11〉〈11| to empty graph state
|+〉⊗|V | , i.e.

|G〉 =
∏

{i, j}∈E

CZi j|+〉⊗|V |,

where |±〉 = 1√
2
(|0〉 ± |1〉) and |V | is the order of the set V .

As important tools, some interesting results of the local Pauli
measurements on graph state need to be introduced. Suppose X,
Y and Z are the Pauli operations. If a measurement of X (Y or Z)
is performed on a qubit associate with vertex i ∈ V , written Xi
(Yi or Zi ), then the system of the other qubits is local unitary
equivalent to new graph state |G ′〉, which is associated a simple
graph G ′ . Specifically,

G ′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G�E(Ni, N j)�E(Ni ∩ N j, Ni ∩ N j)�E({ j}, Ni − { j}),
for Xi,

G�E(Ni, Ni) − {i}, for Yi,

G − {i}, for Zi .

Starlike cluster state with n two-qubit arms, denoted by |SCn〉
hereinafter, is the (2n + 1)-particle entangled state corresponding
to the starlike graph (see Fig. 1). Here, we denote the center qubit
with A and the two-qubit arms with Bi Ai (i ∈ {1,2, . . . ,n}) respec-
tively. The expression of |SCn〉AB1 A1···Bn An is

|SCn〉AB1 A1···Bn An

= [|0〉A
∣∣ω0

n

〉
B1 A1···Bn An

+ |1〉A
∣∣ω1

n

〉
B1 A1···Bn An

]
, (1)

where

∣∣ω0
n

〉
B1 A1···Bn An

=
⊗

1�i�n

(|0+〉 + |1−〉)Bi Ai

=
⊗

1�i�n

(|+0〉 + |−1〉)Bi Ai
,

∣∣ω1
n

〉
B1 A1···Bn An

=
⊗

1�i�n

(|0+〉 − |1−〉)Bi Ai

=
⊗

1�i�n

(|−0〉 + |+1〉)Bi Ai
.

According to the rules of Pauli measurements on graph state,
a fantastic feature of |SCn〉, named scalability, can be explored. The
scalability means that the |SCn〉 state can be tailored to |SCn+1〉
or |SCn−1〉 state agilely. For example, CZ operations can be used
to add a two-qubit arm, and Z measurement performed on qubit
Bi (i ∈ {1,2, . . . ,n}) can be used to delete the arm Bi Ai directly.
Different from the carriers often used in quantum cryptographic
protocols, |SCn〉 state is very suitable for quantum secret sharing
with dynamic agent group.

3. Dynamic sharing of classical information

In this section, let us first describe a quantum secret sharing
scheme based on |SCn〉 state which allows Alice to establish a clas-
sical key with n agents, Bob1, Bob2, . . . , Bobn . It is a basic scheme
such that all agents together can recover Alice’s secret. Afterwards
we show how to add or delete a member in this scheme.

3.1. Basic quantum secret sharing process

We divide the whole basic sharing process into three phases,
initialization phase, distribution phase and reconstruction phase.

Initialization phase. Alice prepares a large enough number of
(2n + 1)-qubit cluster states in Eq. (1). Then Alice sends parti-
cle Bi (1 � i � n) of each entangled state to Bobi . That is, each
|SCn〉AB1 A1···Bn An state is shared in a way that Bobi possesses par-
ticle Bi and Alice possesses the other particles.

To guarantee the security of the transmission from Alice to the
agents, Alice chooses randomly some sample entangled units to
check whether the particles are eavesdropped. The checking pro-
cedure is as follows. For every chosen sample state, Alice first tells
agents its position and measures the particle A in {|0〉, |1〉} basis
(the basis of Z measurement). Next, each agent measures his corre-
sponding particle of the sample state in the {|0〉, |1〉} or {|+〉, |−〉}
basis (the basis of X measurement) and publishes the outcome. Af-
ter that, according to Bobi ’s public information, Alice measures the
particle Ai using the basis different from Bobi ’s. Finally, Alice ana-
lyzes the error rate based on the correlation shown in Eq. (1). If the
error rate exceeds a specified threshold, Alice and her agents dis-
card all the entangled particles and abort the protocol. Otherwise,
Alice will securely use the remainder entangled states to split her
secret information. In regard to the “specified threshold”, the value
is 0 if the quantum resource is transmitted in a noise-free chan-
nel. While in a noisy channel, the error rate is closely related to
the amount of information that an eavesdropper would have. And
a reasonable threshold can be calculated with the methods of in-
formation theory by considering all possible attacks, just as some
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