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The power spectrum analysis using the Lomb–Scargle false alarm probability statistic shows a clear sep-
aration between the average and fluctuating parts of the state density in embedded two-body random
matrix ensembles with a mean-field for both fermion and boson systems as well as in the nuclear shell
model.
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1. Introduction

The separation of averages and fluctuations in energy levels,
transition strengths, etc., provides a physical basis for statistical
spectroscopy of finite quantum systems with interactions such as
nuclei, atoms and molecules [1]. These two distinct parts can then
be studied separately [2]: the average properties using the spec-
tral distribution methods of French [2–6] and fluctuations that
follow the Gaussian Orthogonal Ensemble (GOE) of random matri-
ces introduced by Wigner [7] (also the unitary ensemble GUE and
symplectic ensemble GSE in some situations). Normally one uses
the nearest neighbor spacing distribution (NNSD) and the Dyson–
Mehta �3 statistic [8] for establishing GOE fluctuations. Analy-
sis using the nuclear data ensemble [9,10] gave first conclusive
demonstration of GOE fluctuations in nuclei and now there exist
other examples from a wide variety of quantum systems [11,12].
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The GOE corresponds to ensembles of asymptotically large real-
symmetric matrices which apart from rotational and time reversal
invariance have no other specific properties of the Hamiltonian.
In a many-particle system, GOE describes a situation in which all
particles interact simultaneously. It is clear then that Hamiltonian
(H) matrices, for an m particle system occupying N single par-
ticle states, are dominated by m-body interactions. However, the
particle–particle interactions for systems such as nuclei, atoms,
quantum dots, small metallic grains, etc., are, in general, two-body
in character. This, together with numerical examples from nuclear
shell model [13–16] and more recently for atoms [17] led to the
introduction of two-body random ensembles (TBRE). For spinless
fermion systems, with the two-particle H taken as GOE and then
constructing the many-particle H matrix, with the m-particle ba-
sis states being direct products of single particle (sp) states, gives
the Embedded Gaussian Orthogonal Ensemble of two-body inter-
actions [EGOE(2)] in m-particle spaces. Similarly, for interacting
boson systems, the embedded Gaussian orthogonal ensemble of
two-body interactions can be defined and to distinguish these from
those of fermion systems, they are denoted by BEGOE(2) [18].
One of the most significant features of Embedded ensembles for
interacting particle systems is the separation of information re-
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garding energy levels (also for other observables) into averages
and fluctuations. For fermion systems in the dilute limit (m → ∞,
N → ∞, m/N → 0) with EGOE(2) [1,19] and boson systems in the
dense limit (m → ∞, N → ∞, m/N → ∞) with BEGOE(2) [20],
the nature of this separation is understood analytically using the
binary correlation approximation. There are also numerical calcula-
tions [20,21] and shell model examples [1] that provide qualitative,
though not quantitative, support to the EGOE(2) and BEGOE(2) an-
alytical results.

By drawing an analogy between the energy spectrum and time
series, the study of spectral fluctuations using a power spectrum
analysis was introduced many years back by one of the authors
(RJL) [22]. Recently, this has been emphasized by the Madrid group
(Gómez and collaborators) [23–26] in terms of 1/ f -noise signature
of quantum chaos. In the present work we estimate the power
spectra of deviations between the smooth distribution functions
and the exact one, using a normalized periodogram given by Lomb
[27] and Scargle [28]. This technique, initially used for analyzing
astronomical data, is quite powerful for finding and testing the sig-
nificance of weak periodic signals in unevenly spaced data [28,29].
The Fortran subroutine [30] used for the evaluation of the Lomb–
Scargle statistic F returns the maximum periodogram value and
the value of F which estimates the significance of that maximum
against the hypothesis of random noise. The frequency at which
the maximum occurs is denoted by f p and Λ = (1 − F ) × 100 is a
measure, in percentage, of the significance of the signal at f p . Thus
the power spectra of the deviations between the exact and smooth
distribution functions can provide a ‘quantitative measure’ (Λ pa-
rameter) for the separation that exists between the smooth and
fluctuating parts (in the past the r.m.s. deviation has been used;
see Figs. 1–4 ahead).

Realistic Hamiltonians include, besides the two-body interac-
tions V (2), a mean field producing one-body part h(1). There-
fore, it is more realistic to consider [31] embedded ensembles of
(1+2)-body Hamiltonians EGOE(1+2) and BEGOE(1+2) with H =
h(1) + λ{V (2)}, where λ is the strength of the two-body interac-
tion in units of average spacing of the sp levels defining h(1). Note
that {V (2)} represents EGOE(2) or BEGOE(2). We have also consid-
ered fermions with spin 1/2 degree of freedom, i.e. EGOE(1 + 2)-s
[32]; here the interaction will have two parts as the two particle
spin s = 0,1 and hence H = h(1)+λ0{V s=0(2)}+λ1{V s=1(2)}. The
purpose of the present Letter is to apply the periodogram analy-
sis to study the average–fluctuation separation in energy levels for
EGOE(1 + 2), EGOE(1 + 2)-s, BEGOE(1 + 2) and a realistic nuclear
shell model example for 24Mg. Now we will give a preview.

Analytical results for level motion in dilute fermion and dense
boson systems, obtained using the binary correlation approxima-
tion, are briefly discussed in Section 2. The periodogram method
is discussed in Section 3 and results of the periodogram analysis
of average–fluctuation separation for the four examples considered
are presented in Section 4. Concluding remarks are given in Sec-
tion 5.

2. Average–fluctuation separation in EGOE(2) and BEGOE(2)

Given a normalized state density ρ(E), it is possible to ex-
pand it in terms of its asymptotic (or smoothed) form ρ̄(E) and
the orthonormal polynomials Pμ(E) defined by the asymptotic
density. In general, for ρ̄(E) a Gaussian, i.e. ρ̄(E) = ρG(E) =
(
√

2πσ)−1 exp(−(E − Ec)
2/2σ 2) and using the Gram–Charlier (GC)

expansion we have,

ρ(E) = ρG(E)

{
1 +

∑
ζ�3

(ζ !)−1 Sζ Heζ (Ê)

}
. (1)

In Eq. (1), Ê = (E − Ec)/σ is the standardized energy variable. The
centroid Ec = 〈H〉m and the variance σ 2 = 〈H2〉m − E2

c of the Gaus-
sian ρG are the same as that of ρ . Heζ are Hermite polynomials
and Sζ are, in principle, related to higher moments of the state
density ρ(E). We will apply Eq. (1) to EGOE(2) and BEGOE(2) by
noting that for fermions in the dilute limit and bosons in the dense
limit ρ̄(E) = ρG(E). Thus, at this stage distinction between Bo-
son and Fermion systems is not important. Since Sζ ’s change from
member to member of the EGOE(2) or BEGOE(2) ensemble, one
can treat them as independent zero-centered random variables,

Sζ = 0, Sζ Sζ ′ = 0 for ζ 	= ζ ′. (2)

This is consistent with the result ρ̄(E) = ρG(E) where the ‘bar’
denotes an ensemble average. Each ζ term in Eq. (1) represents an
excitation ‘mode’ and the wavelength of the modes is proportional
to ζ−1. The distribution function F (E), the integrated version of
ρ(E), is given by F (E) = d

∫ E
−∞ ρ(E ′)dE ′ where d is the dimension-

ality. Deviation of a given level with energy E from its smoothed
(with respect to the ensemble) counterpart Ē gives the level mo-
tion. In terms of F (E) and the local mean spacing D(E), we have
δE = E − Ē = [F (E) − F (E)]D(E). Then the variance of the level

motion is given by the ensemble average of (δE)2

D(E)
2 . Using Eq. (1)

and adding centroid and variance fluctuations [then the summa-
tion in Eq. (1) extends to ζ � 1], we have easily

(δE)2

D(E)
2

= [
F (E) − F (E)

]2

= d2σ 2 [
ρG(E)

]2
{∑

ζ�1

(ζ !)−2 S2
ζ

[
Heζ−1(Ê)

]2
}
. (3)

Therefore we need S2
ζ for EGOE(2) and BEGOE(2) and they are

related to the co-variances Σp,q = 〈H p〉〈Hq〉 − 〈H p〉〈Hq〉. Now ap-
plying the so-called binary correlation approximation, first used by
Wigner for GOE, it can be shown that [1,19,20], for m fermion or
bosons in N sp states,

S2
ζ

EGOE(2)−−−−−→
dilute limit

2ζ

(
m
2

)2−ζ (
N
2

)−2

, S2
ζ

BEGOE(2)−−−−−−→
dense limit

2ζ

(
N
2

)−ζ

.

(4)

Then the final result for level motion in fermion systems in the
dilute limit is [1,19],

(δE)2

D(E)2

EGOE(2)=
(

N
m

)2 (
m
2

)2 [
ρG(E)

]2

×
{∑

ζ�1

(ζ !)−22ζ

(
m
2

)2−ζ (
N
2

)−2 [
Heζ−1(Ê)

]2
}

Ê=0−−−→ 1

π

(
N
m

)2 (
m
2

)(
N
2

)−2

×
{

1 + 1

12

(
m
2

)−2

+ 1

320

(
m
2

)−4

+ · · ·
}
. (5)

Similarly for boson systems in the dense limit the result is [20],

(δE)2

D(E)2

BEGOE(2)=
(

N + m − 1
m

)2 (
m
2

)2 (
N
2

)−2 [
ρG (E)

]2

×
{∑

ζ�1

(ζ !)−22ζ

(
N
2

)−ζ [
Heζ−1(Ê)

]2
}

Ê=0−−−→ 1

π

(N+m−1
m
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(N
2

)
×
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1 + 1
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(
N
2
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+ 1
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(
N
2
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+ · · ·
}
. (6)
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