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We study a pair of asymmetrically coupled identical chaotic quadratic maps. We investigate, via nu-
merical simulations, chaos suppression associated with the variation of both parameters, the coupling
parameter and the parameter which measures the asymmetry. This is a new technique recently intro-
duced for chaos suppression in continuous systems and, as far we know, not yet tested for discrete
systems. Parameter-space regions where the chaotic dynamics is driven towards regular dynamics are
shown. Lyapunov exponents and phase-space plots are also used to characterize the phenomenon ob-
served as the parameters are changed.
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1. Introduction

In recent years many efforts have been devoted to the chaos
control in nonlinear dynamics field, since the work of Ott et al.,
where the chaos control is achieved through carefully chosen time-
dependent perturbation on some system parameter [1]. The re-
sult is the stabilization of a given unstable periodic orbit im-
mersed in chaotic attractor, by making the system stay on the
corresponding stable manifold of this unstable orbit. Chaos con-
trol was subsequently studied by numerous investigators. Iglesias
et al. report a chaos suppression method through numerical trun-
cation and rounding errors [2], with application in discrete-time
systems. Hénon map [3] and Burgers map [4] were used to illus-
trate the method. A method of feedback impulsive suppression of
chaos is introduced in Ref. [5]. It is an algorithm of suppressing
chaos in continuous-time dissipative systems with an external im-
pulsive force, whose necessary condition to use is a reduction of
the continuous flow to a discrete-time one-dimensional map. The
method is illustrated for the Duffing oscillator [6]. Suppression of
chaos in coupling two Duffing oscillators, one in the chaotic regime
and the other in a periodic regime, was numerically demonstrated
in Ref. [7]. Suppression of chaos in the Lorenz system driven by
a high-frequency periodic or stochastic parametric force was pre-
dicted theoretically and verified experimentally in Ref. [8]. A way
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for suppression of chaos in two coupled non-identical neurons un-
der periodic input is suggested in Ref. [9]. It is found that when the
coupling strength is increased, a chaotic neuron can be controlled
by the coupling between neurons. More recently, chaos suppres-
sion was obtained in a system consisting of a ring of coupled
cells incorporating a three-step biochemical pathway of regulated
activator-inhibitor reactions, for varying interaction strengths and
system sizes [10]. In a more recent work, Bragard et al. introduce
a new technique based in couplings [11]. They showed that by
selecting an adequate coupling parameter, it is possible to drive
a chaotic dynamics towards a regular periodic attractor. Chaos
suppression was achieved, by selecting an adequate coupling, for
pairs of identical continuous-time systems, like that Rössler sys-
tem, Lorenz system, and four-dimensional Lotka–Volterra models.

In this Letter we treat a discrete-time system. We show numer-
ically that chaos suppression in a chaotic quadratic map can be
achieved through an adequate asymmetric coupling with another
chaotic identical quadratic map. In other words, the main objective
of the present investigation is to show that an adequate coupling
of two identical chaotic quadratic maps is able to drive a chaotic
dynamics towards a regular periodic attractor. Consequently, in
this Letter we consider chaos suppression in the coupling of two
chaotic identical quadratic maps.

2. Results and discussion

Let us consider the system of two asymmetric coupled quadratic
maps of the form
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Fig. 1. (Color online.) The parameter-space of the coupling (1). In this and further
figures domains of different attractors are shown by different shadings. Numbers
indicate periods.

xt+1 = a − x2
t + b(1 + c)(xt − yt),

yt+1 = a − y2
t + b(1 − c)(yt − xt), (1)

where xt , yt represent dynamical variables, a = 1.44 is the nonlin-
earity parameter, 0 < b < 1 is the coupling parameter, 0 < c < 1 is
the asymmetry parameter, and t = 0,1,2, . . . is the discrete time.
For this value of parameter a, and b = 0, the quadratic map is in
a chaotic state characterized by a positive Lyapunov exponent. For
c = 0, the coupling is symmetric.

The parameter-space of the coupling (1) is shown in Fig. 1. It
is an isoperiodic diagram obtained by discretizing the parameter
interval in a grid of 350 × 350 points equally spaced. This corre-
sponds in Fig. 1 to a same resolution in both b and c axes, that is
�b = �c = 0.002857. For each point (b, c), an orbit of initial con-
dition (x0, y0) converges or to chaotic, or to quasiperiodic, or to
periodic attractors, or to an attractor at infinity (unbounded attrac-
tor), after a transient of 5 × 104 iterates. This unbounded attractor
(white region) is indicated by ∞, and regions of different period-
icity are identified by integer numbers which denote the period
of the region. All other periodic regions not identified by num-
bers, up to period-50, were considered and painted in black. The
grey region indicates chaotic and quasiperiodic attractors. Fig. 1
displays two principal regions where the chaotic nature of the
single quadratic map is lost, in view of the coupling. These re-
gions are inside of the rectangles A and B, the first located roughly
in the range 0.06 � b � 0.16 (0.10 � c � 0.83) and immersed in
a chaotic region, while the second in the range 0.42 � b � 0.56
(0.77 � c � 0.90) and immersed, at first view, in a divergence re-
gion.

Fig. 2 shows a magnification of the region inside the box A in
Fig. 1, where we see clearly a piece of a period-doubling bifurca-
tion cascade 1 × 2n , from bottom to top, immersed in a chaotic
region. Period-1 regions are not shown in that scale. Therefore, in
this region of the parameter-space, as c is increased, for b roughly
along the dashed line, there is a period-doubling bifurcation that
results in a double-period attractor. The process continues un-
til chaos be reached at the top of the diagram. However, if we
look to the lateral borders of the period-doubling bifurcation cas-
cade, from left to right, and walking along lines of constant c and
increasing b we see, for adequate c values, rising and death of
period-2, period-4, period-8, and so on, orbits. This fact is con-
firmed, for instance, by the diagram that appears in Fig. 3, which
is a plot of the Lyapunov exponents λ for the map (1), where
one thousand values of b were considered along the line c = 0.3

Fig. 2. (Color online.) Magnification of the box A in Fig. 1 showing a period-doubling
bifurcation cascade.

Fig. 3. The Lyapunov exponents spectrum for the coupling (1). Here c = 0.3 and
0.06 � b � 0.16.

of Fig. 2, from b = 0.06 up to b = 0.16. This diagram was con-
structed with the same initial conditions and transient used in the
construction of the parameter-spaces of Figs. 1, 2, and 4. The av-
erage involved in the calculation of the Lyapunov exponents was
performed over 1 × 106 iterations. Continuous and dashed lines
represent the larger and the minor exponent, respectively, while
the dotted line locates λ = 0.

Fig. 3 shows regions in the parameter-space of the system (1)
where both Lyapunov exponents are positive, fact recently reported
for a two-dimensional map that models a two-gene system [12].
This is the region surrounding the period-doubling bifurcation cas-
cade of Fig. 2, being, therefore, a region in the parameter-space for
which the coupling (1) exhibits hyperchaos. Another plots similar
to that one shown in Fig. 3, where the behavior of the Lyapunov
exponents characterize regions of periodic and hyperchaotic mo-
tion, can be obtained for another values of c.

It is interesting to note that occurs crises in the system (1),
characterized, in this case, by the sudden appearance or disappear-
ance of the hyperchaotic attractor. For example, if c = 0.3 the hy-
perchaotic attractor disappears suddenly in b ≈ 0.082 on account
of a period-4 orbit, and appears also suddenly in b ≈ 0.137 from a
period-2 orbit (see Figs. 2 and 3). The bifurcation 4 → 2 occurs at
b ≈ 0.107.
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