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Non-local dynamics of Bell states in separate cavities
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Abstract

We present non-local dynamics of Bell states in separate cavities. It is demonstrated that (i) the entanglement damping speed will saturate when
the cavity leakage rate γ � 0.4; (ii) the synchronism relationship between the fidelity and the concurrence depends on the initial state; (iii) if the
initial state is 1/

√
2(|01〉 + |10〉), the dynamics of entropy is opposite to that of fidelity.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In contrast with the extensively investigated static entangle-
ment [1–6], dynamic entanglement under the influence of vari-
ant environments is one of the most important and largely unex-
plored problems in the field of quantum teleportation, quantum
computation and quantum communication [7–10]. It is not only
involved with the foundation of quantum mechanics, but also a
fundamental issue in creating, quantifying, controlling, distrib-
uting and manipulating the entangled quantum bits, which are
composed of spin-1/2 atoms in different problems [1,11–13].
An entangled system is in such a state that cannot be factor-
ized [14] in its Hilbert space. And the most familiar and widely
used examples are Bell states. The two particles or atoms of
spin-1/2 are correlated no matter how long distance is between
them. Generally, due to different kinds of quantum reservoir,
the entanglement degree between them vanishes asymptoti-
cally. However, if the reservoir consists of, e.g., only one or
two electromagnetic field modes, then the entanglement may
decrease abruptly and non-smoothly to zero in a finite time
[9,15,16], which is a new nonlocal decoherence called entan-
glement sudden death (ESD). Therefore, demonstration of the
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dynamics of Bell states [17] would have profound implications
for understanding of the physics in the realization of qubits in
experiments.

So far in quantum optics experiments, Bell states can be
generated with trapped ions [18] and in cavity quantum electro-
dynamics (CQED) [19,20], which has attracted much attention.
Based on cavity QED systems, schemes (to see Refs. [21–25]
and references therein) have been proposed to implement quan-
tum communications or engineer entanglement between atoms
in distant optical cavities. In most of them, two separated cav-
ities are connected via some channels, for instance, an optical
fiber [25]. And in a recent paper, Yin and Li [26] investigated a
system consisting of two single-mode cavities connected by an
optical fiber and multiple two-level atoms trapped in the cav-
ities. They show that ideal entangling can be deterministically
realized between the distant cavities. Besides, utilizing a system
of two-atoms and two photon modes, Masood and Miller [27]
used the Jaynes and Cummings model [28], which is consid-
ered to be one of the most appropriate models for exploiting
the dynamics of entanglement [29–32], in the rotating wave ap-
proximation to study entanglement of more than one atom with
vacuum. The photon modes in their model are uncoupled, how-
ever, the leakage of cavities and the effect of temperature (yet
recently, in other models the two-qubit entanglement dynam-
ics for a finite-temperature environment has been discussed in
[33,34]) are actually not considered thoroughly.
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In this Letter, we consider a quantum model with two identi-
cal two-level atoms or pseudo-spins of 1/2 (as an open subsys-
tem with qubits labelled s1 and s2) and two single-mode cavities
(labelled 1 and 2 correspondingly). The atom sj (j = 1 or 2) is
embedded in and coupled only with the cavity mode j , which
could be regarded as its bath or environment. The two cavities
are so far departed that there is no direct interaction between
them as well as the two atoms. Initially, the two qubits are pre-
pared as a most-entangled states (Bell states). The focus of in-
terest is their degrading quantum evolution, which are measured
by the concurrence [35,36], the fidelity [37] and the entropy ex-
change [38,39]. The calculations and physical arguments will
be carried out in two conditions: (i) there is leakage of photons
for the cavities, which are in the vacuum states from the begin-
ning; (ii) the cavities are so perfect that the loss of photons from
them could be neglected and the two single modes are initialled
in a thermal equilibrium state with the same temperature. The
rest of this Letter is organized as following. In Section 2 we be-
gin with the model Hamiltonian and its analysis derivation; and
then we introduce the numerical calculation procedure about
the evolution of the reduced matrix for the subsystem. Detailed
results and discussions can be found in Section 3. We will make
a conclusion in Section 4.

2. Model and method

The master equation for a two-level atom in a single-mode
cavity [40], as one of the two partitions in our model, can be
taken as

(1)i
dρj

dt
= [Hj ,ρj ] + iγj

(
ajρja

†
j − 1

2
a

†
j ajρj − 1

2
ρja

†
j aj

)
.

For density matrix ρj , j refers to s1 or s2; for the mode operator

aj or a
†
j , j (1 or 2) represents the photon mode coupling with

the corresponding atom. γj is the leakage rate of photons from
the cavity j . Hj describes the Hamiltonian for a subsystem of
one atom and one cavity (j = 1,2):

(2)Hj = ωj

2
σz

j + (1 + εj )ωja
†
j aj + gjωj

(
a

†
j + aj

)
σx

j ,

where ωj is the energy level difference of atom sj in cav-
ity j . εj is the detuning parameter measuring the deviation of
the photon j energy from ωj . gj is introduced as another di-
mensionless parameter which suggests the coupling strength
between qubit sj and mode j . The x and z components of σ

are the well-known Pauli operator. The two qubits are embed-
ded in remote cavities without direct interaction. Therefore the
whole Hamiltonian for this two-atom–two-cavity problem is

(3)H = H1 + H2.

The whole state of the total system is assumed to be separa-
ble before t = 0, i.e.,

(4)ρ(0) = ρS(0) ⊗ ρb(0),

(5)ρS(0) = ∣∣ψ(0)
〉〈
ψ(0)

∣∣,
(6)ρb(0) = ρb1(0) ⊗ ρb2(0).

The initial state |ψ(0)〉 for the two qubits is one of the Bell
states. And the two cavities are in their (i) vacuum states
ρbj (0) = |0j 〉〈0j | (in this case, we will consider γj �= 0) or (ii)
thermal equilibrium states ρbj (0) = e−HB/kBT /Z (in this one,
we set γ to be zero to distinguish the effect of temperature from
that of γ ), where HB is the pure bath part of the whole Hamil-
tonian and Z = Tr(e−HB/kBT ) is the partition function and the
Boltzmann constant kB will be set to 1 for the sake of simplic-
ity.

For the former case, Eq. (1) will be exploited to calculate
ρ(t). For the latter one, Eq. (1) is reduced to

(7)ρ(t) = exp(−iH t)ρ(0) exp(iH t).

To determine the dynamics of the density matrix for the whole
system, two factors need to be considered. The first one is
the expression of the thermal bath state. In numerical calcula-
tions [41], we have to expand ρbj (0) (j = 1,2) to a summation
of its eigenvectors with corresponding weights determined by
its eigenvalues:

(8)ρbj (0) =
∑
m

|φmj 〉ωmj 〈φmj |, ωmj = e−Emj /T

Zj

.

Then for the two single-modes, we have

ρb1(0) ⊗ ρb2(0) =
∑
mn

|φm1〉|φn2〉ωmn〈φn2|〈φm1|,

(9)ωmn = e−(Em1+En2)/T

Z1Z2
,

where the subscripts m and n refer to mode 1 and 2 respectively.
The second important factor is the evaluation of the evolution
operator U(t) = exp(iH t). A polynomial expansion scheme
proposed by us in Refs. [42–44] is applied into the computa-
tion,

(10)U(t) =
(

1

1 + it

)α+1 ∞∑
k=0

(
it

1 + it

)k

Lα
k (H),

Lα
k (H) is one type of Laguerre polynomials as a function of

H , where α (−1 < α < ∞) distinguishes different types of the
Laguerre polynomials and k is the order of it. The scheme is
of an efficient numerical algorithm motivated by Refs. [45,46],
which is pretty well suited to many quantum problems, open
or closed. Additionally, it could give results in a much shorter
time compared with the traditional methods under the same nu-
merical accuracy requirement, such as the well-known 4-order
Runge–Kutta algorithm. After the density matrix ρ(t) for the
whole system is obtained, the reduced density matrix ρS(t) for
the two atoms can be derived by tracing out the degrees of free-
dom of the two single-mode cavities.

3. Simulation results and discussions

We discuss three important physical quantities which indi-
cate the time evolution of the subsystem. (i) The concurrence.
It is a very good measurement for the intra-entanglement be-
tween two qubits and monotone to the quantum entropy of the
subsystem when the subsystem is in a pure state. It is defined
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