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Abstract

Global asymptotic stability for Cohen–Grossberg neural networks (CGNNs) with time-varying delays is investigated. Criteria are proposed
to guarantee the stability and uniqueness of equilibrium point of CGNNs via LMI approach. A numerical example is illustrated to show the
effectiveness of our results.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Cohen–Grossberg neural networks (CGNNs) were introduced by Cohen and Grossberg [1,2]. Neural networks (NNs) had re-
ceived the increasing attention due to their application in optimization, recognition, prediction, diagnosis, decision, association,
approximation, and generalization. CGNNs can be used to describe the general NNs, bidirectional associative memory neural net-
works (BAMNNs), cellular neural networks (CNNs), and Hopfield neural networks (HNNs). On the other hand, artificial neural
networks are usually implemented by integrated circuits. In the implementation of artificial neural networks, time delay is produced
from finite switching and finite propagation speed of electronic signals. During the implementation on very large-scale integrated
chips, transmitting time delays will destroy the stability of the neural networks. Hence it is a worthy work to consider the stability
of delayed CGNNs [3–7]. Global asymptotic stability and uniqueness of equilibrium point of CGNNs with time-varying delays are
guaranteed in this Letter.

In [6] and [7], some matrix inequalities and algebraic inequality conditions were proposed based on Lyapunov approach. In [5],
M matrix-based approach was used to guarantee the exponential stability for delayed CGNNs. It is usually difficult to obtain
a feasible solution using algebraic criteria and matrix inequality conditions. The LMI-based stability criteria for CGNNs with
constant time delays had been proposed in [3] and [4]. LMI approach is an efficient tool for dealing with many control problems
and can be solved by using the toolbox of Matlab [8]. In this Letter, some less conservative LMI-based stability conditions are
proposed. A numerical example is provided to show the improvement achieved by our results.
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2. Problem formulations and preliminaries

The notation that will be used throughout the Letter is listed as follows:
C0 := Set of continuous functions from [−τM,0] to �n,
AT := Transpose of matrix A,
diag[ai] := Diagonal matrix with the diagonal elements ai , i = 1,2, . . . , n,
P > 0 (respectively P < 0) := P is a positive (respectively, negative) definite symmetric matrix,[

A B
∗ C

] := ∗ represents the symmetric form of matrix, i.e., ∗ = BT .
Consider the following CGNNs with time-varying delays:

(1a)ẋ(t) = D
(
x(t)

)[−C
(
x(t)

) + Af
(
x(t)

) + Bf
(
x
(
t − τ(t)

)) + J
]
, t � 0,

(1b)x(t) = φ(t), t ∈ [−τM,0],
where x(t) = [x1(t) x2(t) · · · xn(t)]T , x(t −τ(t)) = [x1(t −τ1(t)) x2(t −τ2(t)) · · · xn(t −τn(t))]T , n � 2 is the number
of neurons in the network, 0 � τi(t) � τM , τ̇i (t) � τD < 1, i = 1,2, . . . , n, f (·) is the output, J = [J1 J2 · · · Jn]T is the
external bias vector. The matrices D(x(t)) = diag[di(xi(t))], C(x(t)) = diag[ci(xi(t))], di(·) is positive, continuous, and bounded,
ci(·) is differentiable with dci(xi)/dxi � δi > 0, δi , i ∈ n, are some given constants. A and B ∈ �n×n are constant matrices, and
the initial vector φ ∈ C0. The activation functions

f
(
x(t)

) = [
f1

(
x1(t)

)
f2

(
x2(t)

) · · · fn

(
xn(t)

)]T
and

f
(
x
(
t − τ(t)

)) = [
f1

(
x1

(
t − τ1(t)

))
f2

(
x2

(
t − τ2(t)

)) · · · fn

(
xn

(
t − τn(t)

))]T
of CGNN are globally Lipschiz and satisfy

(2)
∣∣fi(ξ1) − fi(ξ2)

∣∣ � Li · |ξ1 − ξ2|, ξ1, ξ2 ∈ �, i ∈ n,

where Li > 0, i ∈ n, are some given positive constants. The condition in (2) is less restrictive than [4] and [6] since the given
activation functions in constraint (2) may be not monotonically nondecreasing.

Suppose that x̃ = [x̃1 x̃2 · · · x̃n]T ∈ �n is an equilibrium point of system (1), then we have

D(x̃)
[−C(x̃) + Af (x̃) + Bf (x̃) + J

] = 0.

By using the assumption at the outset, we obtain that D(x̃) > 0 and J = C(x̃) − Af (x̃) − Bf (x̃). By using the following
translation z(t) = [z1(t) z2(t) · · · zn(t)]T = x(t) − x̃, we can obtain the following system:

d

dt

(
z(t) + x̃

) = ż(t) = D
(
z(t) + x̃

)[−C
(
z(t) + x̃

) + Af
(
z(t) + x̃

) + Bf
(
z
(
t − τ(t)

) + x̃
) + J

]
= D

(
z(t) + x̃

)[−(
C

(
z(t) + x̃

) − C(x̃)
) + A · (f (

z(t) + x̃
) − f (x̃)

)
+ B · (f (

z
(
t − τ(t)

) + x̃
) − f (x̃)

)]
(3)= D̄

(
z(t)

)[−C̄
(
z(t)

) + A · f̄ (
z(t)

) + B · f̄ (
z
(
t − τ(t)

))]
,

where

D̄
(
z(t)

) = D
(
z(t) + x̃

)
, C̄

(
z(t)

) = C
(
z(t) + x̃

) − C(x̃), f̄
(
z(t)

) = f
(
z(t) + x̃

) − f (x̃),

f̄
(
z(t)

) = [
f̄1

(
z1(t)

)
f̄2

(
z2(t)

) · · · f̄n

(
zn(t)

)]T
, f̄i

(
zi(t)

) = fi

(
xi(t)

) − fi(x̃i) = fi

(
zi(t) + x̃i

) − fi(x̃i),

z
(
t − τ(t)

) = [
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(
t − τ1(t)

)
z2

(
t − τ2(t)

) · · · zn

(
t − τn(t)

)]T = x
(
t − τ(t)

) − x̃,

f̄
(
z
(
t − τ(t)

)) = [
f̄1

(
z1
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))
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(
z2

(
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)) · · · f̄n

(
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(
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,

(4a)f̄i

(
zi

(
t − τi(t)

)) = fi

(
xi

(
t − τi(t)

)) − fi(x̃i) = fi

(
zi

(
t − τi(t)

) + x̃i

) − fi(x̃i), f̄i(0) = 0.

From (2) and (4a), we have

(4b)f̄ T
(
z(t)

)
S1f̄

(
z(t)

)
� zT (t)LS1Lz(t),

(4c)f̄ T
(
z
(
t − τ(t)

))
S2f̄

(
z
(
t − τ(t)

))
� zT

(
t − τ(t)

)
LS2Lz

(
t − τ(t)

)
,

where L = diag[Li], Li , i = 1,2, . . . , n, are given in (2). Sj = diag[sji], sji , j = 1,2, i = 1,2, . . . , n, are any positive constants.
By the mean-valued theorem with the assumption dci(xi)/dxi � δi > 0 in system (1), we have

(4d)zi(t)c̄i

(
zi(t)

) = ci(zi(t) + x̃i ) − ci(x̃i )

zi(t) + x̃i − x̃i

(
zi(t) + x̃i − x̃i

)2 � δi · (zi(t)
)2

, i = 1,2, . . . , n,
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