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The dynamics of alpha-helical proteins is described by proposing a model Hamiltonian representing two
exciton bound states. The dynamics is studied by constructing the equations of motion using a two
exciton eigen-function in the discrete level. A numerical analysis shows the existence of two excitons
in alpha-helical proteins and its propagation as solitons along the hydrogen bonding spines. The lattice
model is also treated in the continuum limit which is a valid approximation in the low temperature, long
wavelength limit. The resulting equation is studied using the multiple scale perturbation analysis which
also shows the transfer of two exciton energy through alpha-helical proteins in the form of solitons with
no change in velocity and amplitude.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The alpha-helical structure of protein is one of the important
secondary structures which consists of three chains of hydrogen-
bonded peptide groups (HNCO) with associated side groups run-
ning along the direction of the helical axis with the sequence
“. . .H–N–C=O. . .H–N–C=O. . .H–N–C=O. . .” where C=O represents
the amide-I bond and the dotted lines represent hydrogen bonds.
The leading role in the energy transfer in alpha-helical proteins is
played by amide-I vibrations of atoms in the peptide groups. Davy-
dov [1–5] suggested that nonlinear self-trapping could serve as a
method of energy transport along quasi-one-dimensional chains of
protein molecules through the formation of solitons moving with-
out loss of energy. A soliton along the hydrogen bonding spines
in alpha-helical proteins is formed as a result of the dynamical
balance between the dispersion due to the resonant interaction
of intrapeptide dipole vibrations and the nonlinearity provided by
the interaction of these vibrations with the local displacements
of the equilibrium positions of the peptide groups. In this con-
text Davydov showed that the dynamics of alpha-helical proteins is
governed by the completely integrable nonlinear Schrödinger (NLS)
equation which possesses N-soliton solutions. Following Davydov’s
original suggestion, the model has been elaborated by many physi-
cists to describe more accurately the dynamics of energy transfer
through alpha-helical proteins at the classical and quantum levels
[6–26]. These works include both analytical and numerical studies.
In the same line, the effect of higher order interactions and exci-
tations and interspine coupling on the dynamics of alpha-helical
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protein molecule has been studied both at the discrete and contin-
uum levels by Latha et al. [27–32] in the recent past. Recently it
is observed using ultrafast infrared spectroscopy, a N–H stretching
mode self trapping in the poly-γ -benzyl-L-glutamate helix [33].
Two positive bands in the transient absorption spectrum have been
assigned to self-trapped two-exciton states. It is suggested that the
intrinsic anharmonicity of amide modes plays an important role
when more than one amide excitation is present [34]. Since the
energy of an amide double excitation is reduced in the anhar-
monic case, two excitons do not move independently, but rather
form a bound self-trapped state. Studies on the dynamics of two
quantum states have been reported earlier by Förner [35] and Kerr
et al. [36]. The multi-exciton self-trapping in alpha-helical pro-
teins has been studied recently [37–40] by the multiconfiguration
time-dependent Hartree method for the time propagation of the
exciton-chain vibrational wave function. In these studies only the
linear and pump-probe infrared absorption spectra are calculated
by numerical time propagation of the exciton-chain vibrational
wave function. As analytical studies would give more information,
in this Letter, we investigate the underlying dynamics of alpha-
helical proteins with special consideration to two exciton states.
We propose a model Hamiltonian using the second quantized op-
erators of quantum field theory and derive the equations of motion
after averaging the Hamiltonian using a suitable wave function and
study the dynamics both in the discrete and continuum levels.

The Letter is organized as follows. In Section 2, we introduce
the Hamiltonian for the two exciton states and study numerically
the dynamics for specific choices of physical parameters. In Sec-
tion 3, the lattice model is treated as a continuum chain and
the equations of motion are constructed. The resulting equation
is studied using multiple scale perturbation analysis and the de-
tails are presented in Section 4. The results are summarized in
Section 5.
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2. Model and equations of motion

We consider a protein molecule which consists of peptide
groups bonded in periodic arrays in three chains along the hy-
drogen bonding spine running parallel to the helical axis (alpha-
helical secondary structure). Experimental results, however, show
that the interspine coupling among the three hydrogen bonding
spines is small compared to the intraspine coupling among adja-
cent peptide group of molecules [41]. Therefore it is expected that
the study of the dynamics of a single hydrogen bonding molecular
chain will almost reproduce the dynamics of the full alpha-helical
protein molecular chain. We assume that the peptide group of the
alpha-helical protein chain along the hydrogen bonding spine is
located at nodes nε (n = 0,±1, . . .) where ε is the lattice spac-
ing and consider molecular excitations along the spine in the form
of dipoles. In this model we also include higher order excitations
and interactions which describe the two exciton states and write
the Hamiltonian in the dimensionless form using the second quan-
tized operators as

H =
∑
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In Hamiltonian (1), a†
n (an) creates (annihilates) an exciton in

the local basis state n and b†
q (bq) creates (annihilates) a vibra-

tional quantum of wave vector q in the normal mode with fre-
quency ωq . The constant E0 is the energy of a single exciton on
a given site while J refers to hopping of excitons between neigh-
boring sites. E1 represents the two exciton energy of higher order
(quadrupole type) excitations of the molecules in each unit cell
and J1, the quadrupole–quadrupole type coupling between the ad-
jacent unit cells. These higher order terms describe two quanta of
amide-I excitations since the energy source for the amide-I exci-
tations in living systems is the hydrolysis of ATP which can gen-
erate two quanta of amide-I excitations. The phonon frequencies
ωq is the proportionality constant between longitudinal displace-
ment and the corresponding restoring force. The exciton–phonon
coupling constant χ

q
n and χ

q
1n indicates how strongly localized vi-

brational energy will induce distortion of the alpha-helix and also
how strongly alpha-helix distortion will trap localized vibrational
energy. It arises from modulation of amide-I (C=O stretching) en-
ergy by stretching of the adjacent hydrogen bond. The functional
dependence of the phonon frequencies ωq and the coupling coef-
ficient χ

q
n and χ

q
1n on the phonon mode index q will vary from

system to system. The detail of this dependence is unimportant to
our present purpose, so we leave it unspecified.

The wave function for the collective excitation of the two exci-
ton states may be sought in the form
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In Eq. (2), |0〉 represents the vacuum state wave function. An(t)
and βq,n(t) are considered to be dynamical variables to which
Lagrange’s equations of motion could be applied. We derive the
equations of motion using the Lagrangian given by
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Let us for this moment introduce the normalization condition∑
n |ψn|2 = 1. Using Eqs. (1) and (2) in Eq. (3), we get
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where
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We may now derive equations of motion for the parameters An ,
A∗

n , βq,n and β∗
q,n using the Lagrange’s equation of motion
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where G represents An , A∗
n , βq,n or β∗

q,n . Using the Lagrangian (4),
the equations of motion can be written as
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The other two equations are found to be the complex conju-
gates of Eqs. (9) and (10) respectively. The set of coupled equations
(9) and (10) represents the dynamics of alpha-helical proteins in
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