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Resonances in the one-dimensional Dirac equation in the presence of a point
interaction and a constant electric field
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Abstract

We show that the energy spectrum of the one-dimensional Dirac equation in the presence of a spatial confining point interaction exhibits a
resonant behavior when one includes a weak electric field. After solving the Dirac equation in terms of parabolic cylinder functions and showing
explicitly how the resonant behavior depends on the sign and strength of the electric field, we derive an approximate expression for the value of
the resonance energy in terms of the electric field and delta interaction strength.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Supercritical effects are perhaps one of the most interesting
phenomena associated with the charged vacuum in the pres-
ence of strong electric fields [1,2]. The study of supercritical
effects induced by strong vector potentials goes back to the
pioneering works of Pieper and Greiner [3], Zeldovich and
Popov [4] among others. The idea behind supercriticality is to
have positron emission induced by the presence of very strong
attractive vector potentials. The phenomenon can be described
as follows: the energy level of an unoccupied bound state dives
into the negative energy continuum, i.e., an electron of the Dirac
sea is trapped by the potential, leaving a positron that escapes to
infinity. The electric field responsible for supercriticality should
be stronger than 2mec

2, which is the value of the gap between
the negative and positive energy continua. Such strong electric
fields could be produced in heavy-ion collisions [1,5]. A rig-
orous mathematical study of the behavior of the Dirac energy
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levels near the continuum spectrum and the problem of sponta-
neous pair creation has been carried out by S̆eba [6], Klaus [7]
and Nenciu [8] among others.

In order to get a deeper understanding of the mechanism re-
sponsible for supercriticality and for the resonant peaks appear-
ing in the energy spectrum when supercritical fields are present,
we proceed to work with a vector point interaction in the pres-
ence of a constant electric field. Point interactions potentials
may be used to approximate, in a simple way, more complex
short-ranged potentials. Among the advantages of working with
confining delta interactions we should mention that, they only
possess a single bound state and the treatment of the interacting
potential reduces to a boundary condition. The study of bound
states of the relativistic wave equation in the presence of point
interactions is a problem that has been carefully discussed in
the literature [9–13]. The one-dimensional Dirac equation in
the presence of a vector point delta interaction has also been a
subject of study in the search of supercritical effects induced by
attractive potentials [1,14]. Soon after the publication of the pa-
per by Loewe and Sanhueza [14], Nogami et al. [15] pointed out
that supercritical effects are also absent in a class of non-local
separable potentials in one dimension.
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Since we are interested in studying the mechanism of
positron production by supercritical fields, we proceed to an-
alyze the resonant behavior of the energy when a bound state
dives into the negative continuum. This resonant behavior is as-
sociated with the appearance of simple poles of the resolvent
on the second sheet at a position very near the real axis [16].

The method of complex eigenvalues (Gamow vectors) was
introduced in quantum mechanics by Gamow [17] in connec-
tion with the theory of alpha decay. Titchmarsch [18] and
Barut [19] demonstrated an application, in the framework of
non-relativistic quantum mechanics, for the Gamow vector
method to the problem of an attractive delta interaction δ(r) of
strength − cotα with a weak electric field term associated with
the potential V (r) = −λr . They found that the Schrödinger
equation with a weak electric field exhibits a continuous spec-
trum from −∞ to +∞, and a resonance at E′ in the vicinity
of E0 − 1

2λ tanα, where E0 = − cot2 α is the energy of the un-
perturbed state. The eigenvalue E′ is a complex number in the
lower half plane. According to Barut, the Schrödinger equa-
tion with the potential −λr describes a system that tries to
form a bound state that “dissolves itself” in the presence of
the continuous spectrum. In this Letter, using the idea devel-
oped by Titchmarsch [18], we find the energy spectrum of the
one-dimensional Dirac equation with boundary conditions as-
sociated with a vector Dirac delta interaction and a constant
electric field whose strength is weak, and therefore it produces
a perturbative effect on the delta energy spectrum. We find that
in this case the energy spectrum exhibits a resonance due to su-
percriticality.

The Letter is structured as follows: in Section 2, we solve the
one-dimensional Dirac equation in the presence of an attractive
δ potential and a constant electric field. In Section 3, we com-
pute the energy resonances and show how they depend on the
electric field strength. We also derive an approximate analytic
expression for the energy resonances. Finally, in Section 4 we
summarize our conclusions.

2. The one-dimensional Dirac equation

In this section we will consider the 1 + 1 Dirac equation
in the presence of the attractive vector point interaction poten-
tial represented by eV (x) = −gvδ(x), and a constant electric
field associated with the potential eV (x) = λx. The Dirac equa-
tion, expressed in natural units (� = c = 1) can be written in the
form [20]

(1)

(
iγ μ

(
∂

∂xμ
− ieAμ

)
− m

)
Ψ = 0,

where Aμ is the vector potential, e is the charge and m is the
mass of the electron. The Dirac matrices γ μ satisfy the commu-
tation relation {γ μ, γ ν} = 2ημν with ημν = diag(1,−1). Since
we are working in 1 + 1 dimensions, we choose to work in a
two-dimensional representation of the Dirac matrices

(2)γ 0 = σ3, γ 1 = −iσ2.

Substituting the representation matrix representation (2) into
Eq. (1), and taking into account that the potential interaction

does not depend on time, we obtain

(3)

{
−iσ1

d

dx
+ (λx − E) + mσ3

}
X(x) = 0,

with Ψ = σ3X, and

(4)X(x) =
(

X1
X2

)
,

with the boundary conditions at x = 0

X1
(
0+) = X1

(
0−)

cosgv − iX2
(
0−)

singv,

(5)X2
(
0+) = −iX1

(
0−)

singv + X2
(
0−)

cosgv.

The above conditions (5) describe a point vector potential inter-
action of strength gv [12].

Eq. (3) is equivalent to the system of equations

(6)(m + λx − E)X1 − i
dX2

dx
= 0,

(7)i
dX1

dx
+ (m − λx + E)X2 = 0.

Introducing the new functions Ω1 and Ω2

(8)X1 = Ω1 + iΩ2, X2 = Ω1 − iΩ2,

we obtain that the system of equations (6)–(7) reduces to the
form

(9)
dΩ1

dx
+ i(λx − E)Ω1 − mΩ2 = 0,

(10)
dΩ2

dx
− i(λx − E)Ω2 − mΩ1 = 0,

which is more tractable in the search of exact solutions. Sub-
stituting (9) into (10) we obtain the second-order differential
equation

(11)
d2Ω1

dx2
+ {

iλ + (λx − E)2 − m2}Ω1 = 0.

Looking at the asymptotic behavior of the parabolic cylin-
der functions Dν(z) [21] we obtain that the regular solutions,
for λ > 0, of Eq. (11) belonging to L2(−∞,0) and L2(0,∞)

(ImE > 0), respectively are

Ω−
1 (x) = AD−ρ−1

(√
2

λ
e−i π

4 (λx − E)

)
,

(12)Ω+
1 (x) = BDρ

(√
2

λ
ei π

4 (λx − E)

)
,

where Dρ and D−ρ−1 are parabolic cylinder functions [21],

ρ = im2

2λ
, and A and B are constants.

Inserting (12) into (9) and using the recurrence relations for
the parabolic cylinder functions [21], we obtain

Ω−
2 (x) = i

√
2λ

m
ei π

4 AD−ρ

(√
2

λ
e−i π

4 (λx − E)

)
,

(13)Ω+
2 (x) = i

m√
2λ

ei π
4 BDρ−1

(√
2

λ
ei π

4 (λx − E)

)
.
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