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The propagation and attenuation properties of waves in ordered and disordered periodic composite 
Timoshenko beams, which consider the effects of axial static load and structural damping, resting on 
elastic foundations are studied when the system is subjected to moving loads of constant amplitude with 
a constant velocity. The transfer matrix methodology is adopted to formulate the model in a reference 
coordinate system moving with the load. The localization factor is calculated to determine the wave 
velocity pass bands and stop bands. The interactions between the static axial load and moving load, 
structural damping and disorder on the bands are analyzed.
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1. Introduction

The analysis of moving loads on periodic structures has drawn 
a great deal of attention in the recent years due to their unusual 
physical properties [1–3]. The focus of these studies was placed 
on predicting the velocity pass bands and stop bands. Waves can 
propagate along the periodic structures for the values of the load 
velocity that correspond to the pass bands and waves are atten-
uated within the velocity stop bands. Aldraihem and Baz [1] ap-
plied this concept to investigate the dynamic stability of periodic 
stepped beams under moving loads using the impulsive paramet-
ric excitation method. Ruzzene and Baz [2] performed a paramet-
ric study to evaluate the dynamics of wave propagation in axi-
symmetric shells with periodic stiffeners under moving loads, by 
analyzing the eigenvalues of the transfer matrix for different load 
velocities. Yu et al. [3] extended the work of Ruzzene and Baz [2]
in order to predict the propagation of steady state vibration in a 
periodic pipe system, which consisted of two materials on elastic 
foundations under an external moving load. The beam-mode sta-
bility and wave propagation of a fluid-conveying periodic shell on 
elastic foundation subjected to external loading were also inves-
tigated by Shen et al. [4]. However, it is important here to note 
that none of previous research involved the wave propagation and 
attenuation induced by moving loads in disordered periodic struc-
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tures, not to mention the disordered damped periodic structures, 
in which the wave propagation and attenuation in frequency do-
main were studied in Refs. [5–8].

The problem of beams resting on elastic foundation is of prac-
tical importance in many engineering applications such as high-
way and railroad structures, geotechnical structures [9–14]. Fur-
thermore, because of temperature and moisture changes and other 
factors, extensive efforts have been dedicated to studying the ef-
fect of the axial loads in the beams on elastic foundation especially 
when the beams are subjected to moving loads and excellent con-
tributions to this problem are given by Kim [15,16]. To date, most 
research on the interaction between the axial static load and the 
transverse moving load has dealt with the uniform beam, little 
work has been performed on the periodic or disordered periodic 
beam on elastic foundation.

In this letter, the propagation and attenuation properties of 
waves in ordered and disordered periodic composite beams on 
elastic foundations [10,17] due to moving loads are examined. The 
study focuses primarily on the effects of axial load and structural 
damping as well as disorder on the localization factor, as a func-
tion of velocity of moving load.

2. Equation of wave motion and transfer matrix

As shown in Fig. 1, a periodic composite beam on elastic foun-
dations, subjected to a static axial load T and a transverse moving 
load F0, consists of an infinitely alternate pattern of steel (sub-
cell 1) and epoxy (sub-cell 2). By adopting Winkler’s type of soil 
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Fig. 1. Periodic composite beam on elastic foundations: (a) infinite beam system; (b) detail of the j-th cell; (c) sign convention for the beam element of sub-cell 1 (sign 
convention of sub-cell 2 is similar to that of sub-cell 1).

reaction and the Timoshenko beam theory, using the complex 
modulus to represent structural damping, the differential equation 
of wave motion for sub-cell 1 of the j-th cell can be derived as 
[13,14,18]
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where w j1(x, t) and θ j1(x, t) are the transverse displacement and 
bending rotation, respectively. E1 = (1 + iη)E01 is the complex 
Young’s modulus, E01 is the Young’s modulus and η is the material 
loss factor. A1 and I1 are the cross-sectional area and the area mo-
ment of inertia. G1 = E1/(2(1 +ν1)) is the complex shear modulus, 
ν1 is Poisson’s ratio, κ1 is the cross-section geometry shape param-
eter. ρ1 is the mass density and t is the time. l1 is the length of 
sub-cell 1. K f is the stiffness coefficient of the elastic foundations. 
F0δ(x − v0t) is the external load traveling at constant velocity v0
along the beam and F0 is the magnitude of the applied load along 
the transverse direction.

Imposing a coordinate system ξ moving with the load [3]

ξ = x − v0t (2)

the transverse displacement and the rotation become

w̄ j1(ξ) = w j1(x − v0t)

θ̄ j1(ξ) = θ j1(x − v0t) (3)

If the steady-state response of the beam is considered, w j1 and 
θ j1 will become time invariant due to the constant moving load F0

coming from far away at a constant velocity v0, therefore all the 
partial derivatives of w j1 and θ j1 with respect to time in Eq. (1)
can be assumed as zero. Thus, Eq. (1) can be rewritten in a new 
coordinate system as
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The general solution to Eq. (4) has the form

w̄ j1(ξ) =
4∑

n=1

αne−iknξ , θ̄ j1(ξ) =
4∑

n=1

βnαne−iknξ (5)

Substituting Eq. (5) into the associated differential equation of 
Eq. (4) yields the characteristic equation[

G1 A1κ1k2 − ρ1 A1 v2
0k2 + T k2 + K f −ikG1 A1κ1

ikG1 A1κ1 E1 I1k2 + G1 A1κ1 − ρ1 I1 v2
0k2

]

×
{

1
β

}
=

{
0
0

}
(6)

Eq. (6) gives a dispersion relation as(
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Solving Eq. (7) gives four roots of the flexural wavenumbers kn

(n = 1, 2, 3, 4) as
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