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The delay coordinate method is known to be a practically useful technique for reconstructing the states 
of an observed system. While this method is theoretically supported by Takens’ embedding theorem 
concerning observations of a scalar time series, we can extend the method to include a multivariate 
time series. It is often assumed that a better prediction can be obtained using a multivariate time 
series than by using a scalar time series. However, multivariate time series contains various types of 
information, and it may be difficult to extract information that is useful for predicting the states. Thus, 
univariate prediction may sometimes be superior to multivariate prediction. Here, we compare univariate 
model-free time series predictions with multivariate ones, and demonstrate that univariate model-
free prediction is better than multivariate one when the prediction steps are small, while multivariate 
prediction performs better when the prediction steps become larger. We show the validity of the former 
finding by using artificial datasets generated from the Lorenz 96 models and a real solar irradiance 
dataset. The results indicate that it is possible to determine which method is the best choice by 
considering how far into the future we want to predict.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Embedding methods are employed to reconstruct attractors 
from a time series. In particular, they are often used for making 
predictions for a time series over a short period. It is known that a 
chaotic dynamical system can be reconstructed from a scalar time 
series of observations of the state of a dynamical system under the 
condition stated in Takens’ theorem [1,2], which is that the embed-
ding dimension is larger than twice the dimension for the under-
lying dynamics. It is commonly assumed that a multivariate time 
series can provide a better future prediction than a scalar time se-
ries [3]. For example, weather forecasts are based on many types of 
data that are observed in various locations. Actually, if a distance 
between 2 points becomes smaller, a correlation coefficient of time 
series data of solar irradiance becomes higher [4]. Therefore, we 
commonly presume that we can obtain a better prediction by us-
ing a multivariate time series than by using a scalar time series. 
However, multivariate time series contains various types of infor-
mation, and it is difficult to extract information that is useful for 
predicting the states [5]. Therefore, we investigate the conditions 
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under which univariate time series prediction is superior to multi-
variate time series prediction. We use model-free prediction based 
on embedding techniques [6,7,5]. There are some existing meth-
ods for predicting a multivariate time series. In particular, those 
described in [8–10] adopt a linear approach. In this paper, we com-
pare multivariate predictions with univariate predictions by using 
a nonlinear approach.

The remainder of this paper is organized as follows. In Sec-
tion 2, we discuss the theoretical framework of delay coordinates 
and Takens’ embedding theorem. In addition, we discuss our pre-
diction methods, which are based on the analogue method. In 
Section 3, we compare our predictions on artificial datasets gen-
erated from the Lorenz 96 models [11] and a real dataset of solar 
irradiance. In Section 4, we discuss our results and conclude the 
paper.

2. Material and methods

2.1. Takens’ embedding theorem

Takens’ embedding theorem [1,2] provides information regard-
ing the hidden status of a dynamical system. Using this theorem, 
we can reconstruct its attractor from a limited number of obser-
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vations. This theorem can be applied in the domain of time series 
predictions.

First, we consider a dynamical system in which Takens’ embed-
ding theorem can be applied. Suppose that we have a dynamical 
system x(t) ∈ R

m and an observational time series s(t) ∈ R given 
as follows:

dx(t)

dt
= f (x(t)), (1)

s(t) = g(x(t)), (2)

where f : R
m → R

m represents the underlying dynamics,
g :Rm →R is an observation function, and T ∈ R denotes a time 
delay. Then, we define a function Gd,T : Rm → R

d for obtaining 
delay coordinates as follows:

Gd,T (x(t − (d − 1)T ))

= (s(t − (d − 1)T ), s(t − (d − 2)T ), ..., s(t − T ), s(t)) , (3)

where d ∈N represents the embedding dimension. Takens demon-
strated that if d ≥ 2m +1, then it holds that Gd,T and the derivative 
of Gd,T are one-to-one, namely, the maps are injective on the at-
tractor of f .

2.2. Analogue method

The analogue method was first proposed by Lorenz [6]. We de-
fine a set Nd,T (t) of indices for the K nearest neighbors at a time t . 
Then, a direct prediction for p steps in the future is formulated as 
follows:

ŝ(t + p) = 1

|Nd,T (t)|
∑

l∈Nd,T (t)

s(l + p)

= h(Gd,T (x(t − (d − 1)T )), p), (4)

where p denotes the number of prediction steps. Furthermore, we 
consider an iterative prediction. In the iterative prediction, we use 
one step prediction ŝ(t + 1) and feed it as an input repeatedly p
times to generate p steps ahead prediction.

2.3. Multivariate method

In this paper, we consider a multivariate version of prediction. 
We suppose that a multidimensional dynamical system x(t) and 
an observed time series s(t) are defined by

x(t) = (x1(t), x2(t), ..., xm(t)) ∈R
m, (5)

s(t) = (
sm1(t), sm2(t), ..., smI (t)

) ∈R
I . (6)

In particular, these are given as

dx(t)

dt
= f (x(t)), (7)

s(t) = g(x(t)), (8)

where f : Rm → R
m represents the underlying dynamics, and g :

R
m → R

I is an observation function. Now, we define a different 
version of the function to obtain delay coordinates. By following 
[2,12], let Gd,T :Rm → R

Id be a function defined as follows:

Gd,T (x(t − (d − 1)T ))

= (s1(t − (d − 1)T ), s1(t − (d − 2)T ), ..., s1(t − T ), s1(t),

s2(t − (d − 1)T ), s2(t − (d − 2)T ), ..., s2(t − T ), s2(t),

...,

sI (t − (d − 1)T ), sI (t − (d − 2)T ), ..., sI (t − T ), sI (t)) , (9)

where T ∈ R represents a time delay and d ∈ R a parameter for a 
delay dimension. According to [13], if dI ≥ 2m +1, then the generic 
property holds that Gd,T is one-to-one, and the derivative of Gd,T
is also one-to-one on the attractor of f . We define a set NI,d,T (t)
of K nearest neighbors for a time t . Then, a prediction for p steps 
into the future is given as follows:

ŝ(t + p) = 1

|NI,d,T (t)|
∑

l∈NI,d,T (t)

s(l + p), (10)

where p denotes the number of prediction steps.

3. Results and discussion

3.1. Lorenz 96 models

In this section, we present some results from numerical ex-
periments by using artificial data. We compare univariate time 
series predictions with multivariate time series predictions by us-
ing five types of time series data. Dataset (i) was constructed from 
the Lorenz 96 I model [11] without observational noise, while 
dataset (ii) was constructed from the same model and contains 
observational noise, which was generated by 10% white noise. This 
value means the ratio between the standard deviations of noise-
free signal and noise. In addition, dataset (iii) was constructed 
from the same model and contains dynamical noise. Datasets (iv) 
and (v) were constructed from the Lorenz 96 II model [11], and the 
latter contains observational noise generated by 10% white noise. 
The equations of the Lorenz 96 I model are given as follows:

dxi

dt
= xi−1(xi+1 − xi−2) − xi + F (11)

for i = 1, 2, ..., n, where the index i is cyclic. We set F = 8
and n = 10. In addition, the time step for integrating differential 
equations is fixed as dt = 0.02 if not mentioned. We observe xi

(i = 1, 2, ..., n) to generate a time series. A given time series con-
sists of the coordinate xi(t) with i fixed. We set T = 0.02 except 
for the discussion in Section 4.2. The equations of the Lorenz 96 II 
model are given as follows:

dxi

dt
= xi−1(xi+1 − xi−2) − xi + F − hc

b

m∑

j=1

yi, j (12)

dyi, j

dt
= cbyi, j+1(yi, j−1 − yi, j+2) − cyi, j + hc

b
xi (13)

for i = 1, 2, ..., n and j = 1, 2, ..., m, where the index i and j are 
cyclic. We set n = 8 and m = 4. In addition, the time step for in-
tegrating differential equations is fixed as dt = 0.002. Moreover, 
the coefficients are set to h = 1 and b = c = 10. We observe yi, j

(i = 1, 2, ..., n, j = 1, 2, ..., m) to generate a time series. A given 
time series consists of the coordinate yij(t) with i and j fixed as 
well as xi for i fixed. We set T = 0.002. The dataset which con-
tains dynamical noise are calculated by solving some stochastic 
differential equations. We calculate approximate solutions by the 
Euler–Maruyama method [14]. Dataset (iii) is given by the follow-
ing equations:

xi+1(t + dt) ≈ xi(t) + dt(xi−1(t)(xi+1(t) − xi−2(t)) − xi(t) + F )

+ √
dtzi(t), (14)

zi(t) ∼ N(0,σ 2
i ), (15)

where zi(t) means a Gaussian random variable of mean 0 and 
standard deviation σi for the ith point at time t .
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