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A damped driven pendulum with a magnetic driving force, appearing from a solenoid, where ac current 
flows is considered. The solenoid acts on the magnet, which is located at a free end of the pendulum. In 
this system the existence and interrelation of chaos and parametric resonance is theoretically examined. 
Derived analytical results are supported by numerical simulations and conducted experiments.
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1. Introduction

Chaos in damped driven pendulum system has a long standing 
history (see e.g. Refs. [1,2] and references therein) and is applicable 
in vast variety of condensed matter problems [3–5] ranging from 
Josephson junctions to easy-plane ferromagnets. Governing equa-
tion is written in the standard form:

α̈ = −�2 sinα − qα̇ + f D sinωt (1)

where � and q coefficients are usually fixed and f D is a one we 
control. Increasing control parameter f D period doubling [6,7] bi-
furcation scenario and transition to chaos takes place [8–10]. In 
all the mentioned papers control parameter is constant [11] or a 
driving force has a time periodic singular character (kicked excited 
systems [12]). In the present paper driving force is position angle α
dependent, particularly, here, a realistic example of driven damped 
pendulum model is considered. In this context, driving force is of 
a magnetic origin, particularly a solenoid with ac current is acting 
on the magnet, which plays a role of a bob in a pendulum with 
a rigid rod (see Fig. 1). Therefore the amplitude of a harmonic 
force f D greatly depends on the distance between solenoid and 
the magnet, making it angle dependent in a non-trivial manner.

In the frames of the model (1) a possibility of onset of chaos 
has been examined analytically, numerically and experimentally. 
The similar model of magnetic pendulum has been studied long 
before [13], particularly, different orientation of solenoid and mag-
net has been considered, where the orientation of the solenoid 
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Fig. 1. Experimental setup (left) and schematics (right) for driven damped magnetic 
pendulum. L1 is a dipolar moment of solenoid, L2 is a dipolar moment of the mag-
net. α is a deviation angle of the pendulum from vertical. Fx and F y are x and y
components of magnetic force acting on the magnet.

is perpendicular to the pendulum’s rod when the deviation an-
gle is zero. In this case one gets quantization of amplitudes with 
no indication of onset of chaos, while in our case with parallel ori-
entations of solenoid and pendulum in unperturbed position (see 
again Fig. 1) for some values of ac field and/or distance between 
solenoid and magnet chaos is observed due to the parametric res-
onance [14]. Thus the main peculiarity of our model is that the 
existence of parametric resonance is a necessary condition for the 
onset of chaos in the system.
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2. Theoretical model

In my experiments and numerical simulations the magnet is 
rigidly fixed in the place of a bob of the pendulum in such a way 
that the directions of its magnetic moment and the rod of pen-
dulum coincide. Approximating solenoid and magnet as point-like 
magnetic moments (−→L 1 and −→L 2, respectively), one can readily write 
down their dipolar interaction energy as follows:

U = μ0

4π

(
3 · (−→L 1 · −→r )(

−→
L 2 · −→r )

r5
−

−→
L 1 · −→

L 2

r3

)

where −→r ≡ (x, y) is a radius vector of magnet with respect to the 
solenoid, r = √

x2 + y2. Taking into account now that ac current is 
flowing into the solenoid and the magnet is attached at the free 
end of the pendulum one can write for the components of mag-
netic moments following expressions (see also Fig. 1):

L1x = 0, L2x = −L2
x

�
,

L1y = L1(t), L2y = L2
r0 + � − y

�
(2)

where � is the length of the pendulum and r0 is distance between 
magnet and solenoid when the deviation angle from vertical direc-
tion is zero (that is a minimal distance position between solenoid 
and magnet).

Plugging (2) into (1) we find Fx and F y components of the 
forces acting on the magnet:

Fx = −∂U

∂x
F y = −∂U

∂ y

We write Newton’s second law for tangential axis of the pendulum 
as follows:

mα̈� = Fx cosα + F y sinα − mg sinα − qα̇ (3)

where a damping proportional to velocity has been included and m
is a mass of the magnet. We do not write here explicit expressions 
for components of the force because of their cumbersomeness, 
although their complete expressions will be used for numerical 
simulations, while for analytics we just linearize (3) for small de-
viation angles α and approximate r → r0:

α̈ = −α

(
g
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0

)
− qα̇ (4)

where L1(t) ≡ L0
1 cos 2ωt because of the ac current (with 2ω fre-

quency) flowing through the solenoid. Then let us denote
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√

g

�
, h = L0

1
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and reduce (4) to the following equation:

α̈ = −α(ω2
0 + h cos 2ωt) − qα̇ (6)

which is just a Mathieu equation if one sets damping to zero.
The presence of parametric resonance in (6) is examined in 

Ref. [15] for driving frequencies ω close to pendulum oscillation 
frequency ω0. Actually, similar analysis could be done for arbi-
trary ω and the existence of parametric resonance in the system 
will cause undamped oscillations, chaos and some more interest-
ing phenomena. In order to find out what conditions should be 
fulfilled for this to occur, we should seek the solution of equation 
(6) in the following form:

α = a(t) cosωt + b(t) sinωt (7)

Considering a(t) and b(t) as slow functions of time and neglecting 
their second derivatives, (6) is simplified to the following form:

X cosωt + Y sinωt = 0 (8)

where coefficients X and Y both depend on a(t) and b(t). For 
the equation to be true, both coefficients should be equal to zero. 
Thus we get a set of two equations, where our goal is to find the 
regimes of parametric resonance. For this, we should seek for the 
solution in the exponential form a(t) = Aest and b(t) = Best and 
two equations are derived:

A · (2sω + qω) − B · (ω0
2 + h

2
− ω2) = 0

A · (ω2 − h

2
− ω0

2) − B · (2sω + qω) = 0. (9)

Finally we get from the compatibility condition:

s = ω0
2 + h

2 − ω2 − qω

2ω
(10)

Considering parametric instability growth rate s to be positive, the 
instability condition will be:

h ≥ 2 | w2 − w0
2 + 2qω | . (11)

This defines the limits of existence of parametric resonance and 
its dependence on various parameters, but all of these is valid for 
small angles. In order to get the full dynamics we should solve 
differential equation (3) in a full range of angles. Fx and F y compo-
nents of magnetic force are known from derivative of dipole–dipole 
energy. If we do not consider the angle as small, we will not be 
able to make the approximations that has been done before. In 
general, Fx and F y components are very complicated expressions 
and it is impossible to solve the equation (3) analytically. Therefore 
I performed numerical simulations using Matlab.

3. Numerical simulations

Our next goal is to prove theoretically the existence of chaos 
in the system, considering deviation angles as arbitrary. The given 
equation of motion (3) has been solved using ode45 toolbox of 
Matlab program with an initial guess that chaos should occur 
when parametric resonance for small angles takes place. And this 
appears to be true, because as the numerical simulations show, 
when there is parametric instability in the system, it is always 
chaotic. To prove the existence of chaos, the common way is to 
check, whether changing any parameter insignificantly, the differ-
ence between the first and second measurement of some variable 
increases exponentially in time. In other words, Lyapunov expo-
nent should be calculated in order to analyze the behavior of 
chaotic motion. To calculate the exponent, one has to deviate e.g. 
initial angle α(0) by small value making it α′(0) and as time 
evolves, divide the resulting difference between angles α(t) and 
α′(t) on initial deviation. Taking out logarithm from this, dividing 
on time and averaging the results upon the initial deviations Lya-
punov exponent of the process could be defined. Positive exponent 
is an obvious indication of the presence of chaos and one should 
look at the simultaneous presence of parametric resonance condi-
tion in the system.

Another test to check the relation between parametric reso-
nance and chaos in our case of magnetic pendulum is to look 
whether the system performs large angle oscillations starting from 
initial insignificant deviations. In other words, if we give the pen-
dulum very small initial angle, for example 0.0001 rad, and after 
some time it starts to oscillate with normal angles, this means 
that there is parametric resonance and chaos in the system. The 
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