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We consider a boundary problem for 1D electrodynamics modeling of a pulse propagation in a 
metamaterial medium. We build and apply projecting operators to a Maxwell system in time domain 
that allows to split the linear propagation problem to directed waves for a material relations with 
general dispersion. Matrix elements of the projectors act as convolution integral operators. For a weak 
nonlinearity we generalize the linear results still for arbitrary dispersion and derive the system of 
interacting right/left waves with combined (hybrid) amplitudes. The result is specified for the popular 
metamaterial model with Drude formula for both permittivity and permeability coefficients. We also 
discuss and investigate stationary solutions of the system related to some boundary regimes.

© 2016 Elsevier B.V. All rights reserved.

0. Introduction

0.1. On metamaterials

There is a boom interest to artificial media for electromagnetic 
waves propagation with astonishing properties [1]. The problems 
crucially interesting for theoreticians, related to such media named 
metamaterials – ones with simultaneously negative dielectric per-
mittivity and magnetic permeability. In 1968 Victor Veselago [2]
wrote about the general electrodynamic properties of metamateri-
als, but only in 2000 David Smith and his group created such type 
of structures [3]. Structures with simultaneously negative dielectric 
permittivity and magnetic permeability have been called by many 
names: Veselago media, negative-index media, negative-refraction 
media, etc. [1]. Since the discovery of materials with negative re-
fractive index, it has been possible to build new devices that use 
metamaterials ability to control the transfer of electromagnetic en-
ergy. The applications of metamaterials are broad and varied from 
the celebrated electromagnetic cloaking [4,22], to new imaging ca-
pabilities [5].

To achieve negative values of the constitutive parameters ε
and μ, metamaterials must be dispersive, i.e., their permittivity 
and permeability must be frequency dependent, otherwise they 
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would not be causal [7]. As it is shown, for example in [8], if we 
have frequency dispersion, full energy density of electromagnetic 
field will be:

W = ∂(ωε(ω))

∂ω
E2 + ∂(ωμ(ω))

∂ω
H2. (1)

The natural energy positivity W > 0 is guaranteed, if:

∂(ωε(ω))

∂ω
> 0,

∂(ωμ(ω))

∂ω
> 0,

that allow namely the simultaneously negative values of ε < 0 and 
μ < 0 [2].

0.2. Projecting operators approach

In our work we use the dynamical projecting operators ap-
proach, originated from [14]. That’s a general tool of theoretical 
physics to split evolution system to a set of equations of the first 
order in time that naturally include unidirectional equations cor-
responding to elementary roots of dispersion equation. It is based 
on a complete set of projecting operators, each for a dispersion 
relation root that fixes the corresponding subspace of a linearized
fundamental system such as Maxwell equations. The method, com-
pared to one used in [10,11,18], allows us to combine equations of 
the complex basic system in algorithmic way with dispersion, dis-
sipation and, after some development, a nonlinearity taken into 
account and also, introduces combined (hybrid) fields as basic 
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modes. It therefore allows us to formulate effectively a correspond-
ing mathematical problem: initial or boundary conditions in math-
ematically correct form prescribed by physical language, see, e.g. 
applications in acoustics [17]. There is an important development 
of the approach for the problems with variable coefficients [19,20].

A part of this method contains a transition to new variables, 
e.g. of the form

ψ± = ε
1

2
Ei ± μ

1

2
H j,

as did Fleck [10], Kinsler [11,18] and Amiranashvili [12,13] in their 
works. This part is in a sense similar to the projection operator 
method [16], use of which we demonstrate here. The auxiliary 
part prescribed by the projectors action is the underlying equa-
tions combination to fix the corresponding evolution.

0.3. Aim and scope

In this paper we apply the mentioned method of projecting op-
erators to the problem of wave propagation in 1D-metamaterial 
with dispersion of both ε and μ. The main aim of the work is 
very similar to the recent [18] and [16]: we do want to derive an 
evolution equation for the mentioned conditions with the minimal 
simplifications. We, however, fix our attention on the boundary 
regime propagation problem, convenient for the physics of a plane 
wave that enters a metamaterial through plain surface. The me-
thodical differences and results are highlighted and discussed.

The article consists of Introduction, six sections and conclusion.
In Introduction the actuality of problem and basic ideas of pro-

jection method are shown.
In section 1 we state the boundary regime problem. We also 

show, how the material relations change if dispersion accounts.
The number 2.1 includes realization of the program for Drude 

dispersion and Kerr nonlinearity model and hence exhibits the 
main result of the paper: the directed waves interaction system 
for this model, to be applied in metamaterials investigations. The 
Sec. 2.2 includes the results about elliptic stationary solutions that 
show a difference between conventional and Veselago materials.

The section 3 is devoted to projecting operators construction in 
ω and t representations (domains).

In the section four the left and right hybrid waves are defined 
by the dynamic projecting application, that results in the main sys-
tem separation.

In the fifth section we account a general nonlinearity deriving 
the system of the directed waves interaction.

The last section contains the general Drude dispersion descrip-
tion and its approximation in the frequency range under consider-
ation.

1. Statement of problem

1.1. Maxwell’s equations. Operators of dielectric permittivity and 
magnetic permeability

Our starting point is the Maxwell equations for linear isotropic 
dispersive dielectric media, in the SI unit system:

div �D(�r, t) = 0, (2)

div�B(�r, t) = 0, (3)

rot�E(�r, t) = −∂ �B(�r, t)

∂t
, (4)

rot �H(�r, t) = ∂ �D(�r, t)

∂t
. (5)

We restrict ourselves to a one-dimensional model, similarly to 
Schäfer, Wayne [15] and Kuszner, Leble [16], where the x-axis is 

chosen as the direction of a wave propagation. As mentioned au-
thors, we assume Dx = 0 and Bx = 0, taking into account the only 
polarization of electromagnetic waves. This allows us to write the 
Maxwell equations as:

∂ D y

∂t
= −∂ Hz

∂x
, (6)

∂ Bz

∂t
= −∂ E y

∂x
.

Further indices will be omitted for compactness. We’ll introduce 
four variables E , B, D, H. They’re Fourier images of E , B , D and 
H and connected by inverse Fourier transformations:

E(x, t) = ε0√
2π

∞∫
−∞

E(x,ω)exp(iωt)dω, (7)

B(x, t) = 1√
2π

∞∫
−∞

B(x,ω)exp(iωt)dω, (8)

D(x, t) = 1√
2π

∞∫
−∞

D(x,ω)exp(iωt)dω (9)

H(x, t) = μ0√
2π

∞∫
−∞

H(x,ω)exp(iωt)dω. (10)

The domain of Fourier images we call ω-representation or a fre-
quency domain. The functions E , B , D , H are in t-representation 
or in a time domain. Linear material equations in ω-representation
we take as:

D = ε0ε(ω)E, (11)

B = μ0μ(ω)H. (12)

Here: ε(ω) – dielectric permittivity of medium, ε0 – dielectric per-
mittivity of the vacuum. μ(ω) – magnetic permeability of medium 
and μ0 – magnetic permeability of the vacuum. B – analogue of 
function B in ω-representation. For calculation purposes of physi-
cal realization we need to use t-representation. In this representa-
tion ε and μ become integral operators. Then:

D(x, t) = 1√
2π

∞∫
−∞

D(x,ω)exp(iωt)dω

= ε0√
2π

∞∫
−∞

ε(ω)E(x,ω)exp(iωt)dω, (13)

B(x, t) = 1√
2π

∞∫
−∞

B(x,ω)exp(iωt)dω

= μ0√
2π

∞∫
−∞

μ(ω)H(x,ω)exp(iωt)dω. (14)

Plugging

E(x,ω) = 1√
2π

∞∫
−∞

E(x, s)exp(−iωs)ds (15)

into (13) we obtain the expression that contains double integral:
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