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Acoustic wave propagation and sound transmission in a metamaterial-based piping system with 
Helmholtz resonator (HR) attached periodically are studied. A transfer matrix method is developed 
to conduct the investigation. Calculational results show that the introduction of periodic HRs in the 
piping system could generate a band gap (BG) near the resonant frequency of the HR, such that the 
bandwidth and the attenuation effect of HR improved notably. Bragg type gaps are also exist in the 
system due to the systematic periodicity. By plotting the BG as functions of HR parameters, the effect
of resonator parameters on the BG behavior, including bandwidth, location and attenuation performance, 
etc., is examined. It is found that Bragg-type gap would interplay with the resonant-type gap under 
some special situations, thereby giving rise to a super-wide coupled gap. Further, explicit formulation for 
BG exact coupling is extracted and some key parameters on modulating the width and the attenuation 
coefficient of coupled gaps are investigated. The coupled gap can be located to any frequency range as 
one concerned, thus rendering the low-frequency noise control feasible in a broad band range.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Piping systems have wide applications in many engineering ap-
plications, such as heat exchanger in chemical plants, ventilation 
and air condition in buildings, hot/cold leg pipes in nuclear steam 
supply systems, seawater pipes in ocean surface ships and under-
water vehicles of which their outlets are underneath the water 
surface, etc. [1–3]. However, as the piping system begins to work, 
undesirable noise is produced, such that noise pollution is emit-
ted and work environment is deteriorated. Hence, a considerable 
number of researches have been devoted to the noise reduction 
technologies for the piping systems [4–8].

One of the noise control methods that has been widely used in 
piping systems is the installation of water mufflers [9–13]. Acous-
tic wave transmitting in the pipe could be effectively attenuated if 
appropriate mufflers are employed, thus most of the noise emitted 
either from the outlet of piping system or from the pipe wall at 
downstream of muffler could be suppressed. Nevertheless, a limi-
tation existing in the conventional mufflers is their control ability 
for the low-frequency noise. Take the common-used muffler of 
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expansion-chamber type as an example, although it performs well 
for the noise reduction in the high frequency range, it loses out 
at low frequencies, except that its volume can be sufficiently large 
(this is always unpractical since the space left for anechoic devices 
to be installed in piping systems is so limited). The presence of 
Helmholtz resonator (HR) may help to solve the current problem 
of low-frequency noise control, yet its effective bandwidth of noise 
elimination turns out to be too narrow [14–17]. It is not surpris-
ing, therefore, that control technologies for low-frequency noise in 
piping systems have received a great deal of attention.

Recently, the emergence of artificially designed sub-wavelength 
acoustic materials/structures, referred to as acoustic metamateri-
als (AMs), provides a possible way to solve the sound and vibra-
tion problem encountered in industrial engineering [18–20]. AMs 
are generally regarded as artificial materials/structures with mi-
crostructures periodically embedded/attached that possess novel 
and unique properties, such as band gap (BG) [18–22], nega-
tive refraction [23–25], negative effective density and/or modulus 
[26–29], directional propagation [30], and so on [18,31]. The most 
important feature of AMs is its periodic structure. It is worth men-
tioning that the phenomenon of BG within which propagation of 
acoustic/elastic waves is stopped has triggered more exciting in-
vestigations on waveguide systems [18–22]. Early in 1998, Kush-
waha et al. had confirmed the existence of complete acoustic BGs 
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Fig. 1. Sketch of the piping system with HR attached periodically.

in a periodic system which is made up of several dangling side 
branches (DSB) periodically grafted at each of the equidistant sites 
on a slender tube [32]. Behind the work of Kushwaha et al., Boud-
outi et al. introduced a design of a simple acoustic filter consisting 
of two slender side tubes grafted periodically at two sites of an 
infinite slender tube, in which transmission gaps and Fano-like res-
onances are captured [33]. Examples of more recent studies may 
be appreciated from the works of Wang et al. [34,35] and Xiao 
et al. [36,37], who introduced the locally resonant structures into 
beams and pipes, and obtained elastic wave BGs in a much lower 
frequency range.

Generally, there are two formation mechanisms for the BGs: the 
Bragg scattering mechanism and the locally resonant (LR) mecha-
nism. For the BGs induced by the Bragg scattering mechanism (de-
fined as Bragg BGs), their central frequencies fB,n are governed by 
the Bragg condition fB,n = nc0/2a (n = 1, 2, 3 . . .), where c0 and a
are the wave speed of matrix material and the lattice constant, re-
spectively [2,19]. This indicates that the dimension of the structure 
has to be sufficiently large if utilizing the Bragg BGs to insulate 
low-frequency noise. BGs produced by the latter mechanism (la-
beled as LR BGs) can be realized in a frequency range two orders 
of magnitude lower than those given by the Bragg limit, render-
ing the control of low-frequency noise with small size feasible. In 
the present work, the LR mechanism of AMs is introduced into the 
structure design for a piping system. The HR is employed as lo-
cally resonance that will be mounted periodically into the piping 
system. Under such a design strategy, the existence of LR BGs will 
be guaranteed. Bragg BGs do also exist in the same system due 
to the systematic periodicity. Unlike the previous studies, which 
were focused on the wave BG production and analysis, the em-
phasis here is placed on the exploration of the exactly coupling 
condition for Bragg and LR gaps in the periodic piping system, so 
as to achieve broadband acoustic gaps in the low frequency range. 
A transfer matrix (TM) method is developed in the paper, which 
is used to conduct the calculation of BGs and sound transmission 
loss (STL) [10]. Further, the exactly coupling condition is extracted 
and the effects of resonant parameters on the BGs are examined.

2. Governing equations and transfer matrix method

The piping system, consisting of a uniform pipe with HRs at-
tached periodically, is sketched in Fig. 1. Volume of the HR cavity 
is V c; ln and Sn are respectively the length and the cross-sectional 
area of the neck; S p is the cross-sectional area of the pipe. The 
connected HRs with appointed spacing ap in the system are serv-
ing as localized resonators, thus such a construction can be viewed 
as a type of one-dimensional AM. Acoustic wave propagation in 
this system can be described by a plane wave assumption, as the 
audio-frequency noise the present work concerned is focused on 
the low frequency range.

Utilizing the time-harmonic acoustic equations of state simpli-
fied by suppressing the exp(− jωt) throughout, the scalar pressure 
p and vector fluid velocity v satisfy the following equations [23]:

∂2 p

∂x2
+ k2 p = 0, (1)

where k is the wave number that formulated by ω/c0; ω and c0
are respectively the radian frequency and the acoustic speed. So-

lution for the acoustic pressure within the pipe may be written in 
terms of positive and negative traveling waves, as follows:

p = Ate jkx + Are− jkx, (2)

wherein At and Ar denote the amplitude coefficients of trans-
mitted and reflected waves, respectively. Utilizing the relation be-
tween sound press and acoustic velocity v = −ρ−1

0

∫
∂ p/∂xdt , 

where ρ0 is the fluid density, the acoustic speed could be ex-
pressed as [23,34,35]:

ν = 1

ρ0c0

(
Ate jkx + Are− jkx) (3)

and the volume speed Q as:

Q = S p

ρ0c0

(
Ate jkx − Are− jkx). (4)

Equations (1) and (2) may be seen to readily yield the following 
transfer matrix relation for a uniform pipe section with length of 
ap :{

pnH
Q nH

}
=

[
cos ωap

c0
j ρ0c0

S p
sin ωap

c0

j
S p

ρ0c0
sin ωap

c0
cos ωap

c0

]{
pn+1
Q n+1

}
, (5)

which can be rewritten into a short form by introducing the state 
vector � = {p, Q }′ , as follows:

�nH = Tp · �n+1. (6)

Now, considering a connection point with a HR attached, the 
corresponding transfer matrix relation in terms of the classical 
state variables can be given by [34,35]{

pn

Q n

}
=

[
1 0

1/ZH 1

]{
pnH
Q nH

}
, (7)

where ZH is the acoustic impedance of HR, it can be formulated 
by a concentrated parameter model: ZH = jωLH + ( jωCH)−1. Such 
a model is adequately correctly in capturing the acoustic char-
acteristic of HR, as the dimension of HR is always smaller than 
the corresponding wavelength in low-frequency range. Equation (7)
can be rewritten into the following abbreviated form:

�n = TH · �nH. (8)

Combining (6) and (8) yields

�n = Tc · �n+1, (9)

wherein Tc = TH · Tp , in fact, Tc is the transfer matrix for the state 
vectors at two ends of a periodic cell. Subscript ‘n’ indicates the 
relevant variables for the nth periodic cell. Due to the periodic 
boundary condition, the acoustic pressure and the volume speed 
in the left and the right side of a periodic cell should also satisfy 
the Bloch theorem [2,32,33,36,37], namely

�n = e jμap · �n+1. (10)

Combined equations (9) with (10), yields the following equation:∣∣Tc − e jμap I
∣∣ = 0. (11)

It follows the eigenvalues μ, as functions of ω, for the infinite pe-
riodic pipe system. The real part of μ is referred to as propagation 
constant or phase constant, and the imaginary part as attenuation 
constant (decay of the amplitude of a wave propagating from one 
cell to the following). It is can be known that wave propagation 
is possible within frequency bands where μ is real (pass bands), 
whereas attenuation occurs for the frequency values that provide 
an imaginary part to μ.
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