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Within the framework of delay Fokker–Planck equations, a perturbation theoretical method is developed 
to determine second-order statistical quantities such as autocorrelation functions for stochastic systems 
with delay. Two variants of the perturbation theoretical approach are presented. The first variant is based 
on a non-local Fokker–Planck operator. The second variant requires to solve a Fokker–Planck equation 
with source term. It is shown that the two variants yield consistent results. The perturbation theoretical 
approaches are applied to study negative autocorrelations that are induced by feedback delays and 
mediated by the strength of the fluctuating forces that act on the feedback systems.
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1. Introduction

Time-delayed models have been used in various disciplines 
ranging from physics to the life sciences (for reviews see e.g. 
Refs. [1–6]). They are considered as approximative models that 
capture the main effect of a feedback loop but ignore details of 
mechanistic modeling. Time-delayed models have been studied in 
laser physics [7–13] and the engineering sciences [14–16]. The im-
pact of time delayed feedback on bistable dynamical systems has 
been studied [17–19] and the possibility to control chaos [20] and 
noise-induced oscillations [21–23] by means of time-delayed feed-
back has been discussed. Time-delayed models have been used to 
address various problems in biology [3], such as motor control 
under delayed feedback [24–33], neural network systems under 
the impact of delay lines [34–41], the role of delays in ecologi-
cal systems [1,42,43], and cell signaling and gene regulation with 
delays [44–47]. In addition, anticipation in master–slave systems 
involving coupling delays has been studied recently [48–51]. The 
stochastic case of time-delayed systems is of particular interest 
in physics and the life sciences because the systems of interests 
are frequently subjected to thermal noise fluctuations or random 
perturbations originating from other sources [6,52]. Research on 
stochastic delay systems has produced a substantial amount of 
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interesting results (see references above), in particular, using the 
extended phase space approach [10,14,53–55] and the so-called 
delay Fokker–Planck equation method [4,56–61]. In the context of 
the latter approach, small time delay approximation methods have 
been proposed [4,56,62] and a perturbation theoretical technique 
has been developed to deal with time-delayed feedback loops that 
weakly impact a Markovian dynamics described by a Langevin 
equation [59,63]. Since then these approximative solution tech-
niques based on delay Fokker–Planck equations have been applied 
in various studies [64–72].

However, the aforementioned perturbation theoretical method 
[59,63] has been developed to yield first order statistical quantities 
such as mean values and single time point probability densities. 
Therefore, at issue is to generalize the approach to address second 
order statistical quantities and in particular to derive autocorre-
lation functions in the time domain. In Sec. 2.1 we will outline 
a general perturbation theoretical method to derive second order 
statistical quantities within the framework of delay Fokker–Planck 
equations. In Sections 2.2 and 2.3, we will then focus on the sta-
tionary case and on very long time delays. In Sec. 2.4 we will show 
that the method yields results consistent with the exact solutions 
known for linear time-delayed models. An application to nonlinear 
stochastic time-delayed systems will be discussed in Sec. 2.5 and 
in this context, in Sections 2.6 and 2.7 the perturbation theoretical 
method will be used to discuss the emergence of negative autocor-
relations induced by time-delayed feedback loops and mediated by 
the strength of fluctuating forces.
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2. Perturbation theory for stochastic delay differential equations

2.1. General case

Let X(t) denote a time-dependent random variable X(t) defined 
on a domain �, where t is time. Let us assume that X(t) satisfies 
the stochastic delay differential equation

d

dt
X(t) = h(0)(X(t)) + βh(1)(X(t), X(t − τ )) + g(x)�(t), (1)

where h(0)(x) is the unperturbed drift function, while the expres-
sion βh(1)(x, y) describes a perturbation imposed on the unper-
turbed dynamics. Here and in what follows β ≥ 0 is a small (per-
turbation) parameter. The unperturbed dynamics corresponds to a 
Markov diffusion process given in terms of a Langevin equation. 
Accordingly, the term g(x)�(t) is the fluctuating force acting on 
the evolution of X . �(t) is a Langevin force [73,74] normalized to 
1 like 

〈
�(t)�(t′)

〉 = δ(t − t). Here and in what follows, δ(·) is the 
Dirac delta function and 〈·〉 means ensemble averaging. The func-
tion g(x) is a measure for the strength of the fluctuating force. 
As indicated, we consider the case in which g can depend on 
the current state X(t). The multiplicative fluctuating force g(x)�(t)
is interpreted using the Ito rule of stochastic differential equa-
tions [73]. The perturbation function h(1) is assumed to depend 
in general both on the current state X(t) and on a previous state 
X(t − τ ) of the system, where τ ≥ 0 denotes the time delay. Con-
sequently, β h(1)(x, y) describes a delayed feedback loop that has a 
weak impact on the unperturbed dynamics.

The single variable probability density P (x, t) is formally de-
fined by P (x, t) = 〈δ(x − X(t)〉. Likewise, the joint probability den-
sities

P (x, t; x′, t′) = 〈
δ(x − X(t))δ(x′ − X(t′))

〉
,

P (x, t; x′, t′; y, t − τ ) =〈
δ(x − X(t))δ(x′ − X(t′))δ(y − X(t − τ ))

〉
(2)

with t ≥ t′ can be introduced. The evolution equation for P (x, t;
x′, t′) reads (see Eq. (19) in Ref. [59])

∂

∂t
P (x, t; x′, t′) =

∫
�

dy L̂(x, y,∇x)P (x, t; x′, t′; y, t − τ ) (3)

with the Fokker–Planck-like operator

L̂(x, y,∇x) = − ∂

∂x
[h(0)(x) + β h(1)(x, y)] + ∂2

∂x2

g2(x)

2
. (4)

Equation (3) has been introduced by Guillouzic et al. [4,56,57] and 
will be referred to as delay Fokker–Planck equation [58,59,61]. It 
can be broken down into two parts

∂

∂t
P (x, t; x′, t′) = F̂ (0)(x,∇x)P (x, t; x′, t′)

− ∂

∂x

∫
�

dy β h(1)(x, y)P (x, t; x′, t′; y, t − τ ) (5)

with the Fokker–Planck operator of the unperturbed system

F̂ (0)(x,∇x) = − ∂

∂x
h(0)(x) + ∂2

∂x2

g2(x)

2
. (6)

The objective is to derive a evolution equation for P (x, t; x′, t′)
that formally has the structure of a Fokker–Planck equation. To 
this end, we decompose the 3-time point joint probability den-
sity P (x, t; x′, t′; y, t − τ ) such that we can extract the function 
P (x, t; x′, t′):

P (x, t; x′, t′; y, t − τ ) = P (y, t − τ |x, t; x′, t′)P (x, t; x′, t′). (7)

Here P (y, t − τ |x, t; x′, t′) is a conditional probability density de-
fined by

P (y, t − τ |x, t; x′, t′) = 〈δ(x − X(t − τ ))〉|X(t)=x,X(t′)=x′ , (8)

where 〈·〉|G is an ensemble average under the constraint defined 
by the condition G . Note that Eq. (7) formally satisfies the well-
known relation P (A, B, C) = P (C |A, B)P (A, B) that relates any 
three variable joint probability function P (A, B, C) to a corre-
sponding two variable joint probability function P (A, B) by means 
of the condition probability density P (C |A, B). Substituting Eq. (7)
into Eq. (5), we find

∂

∂t
P (x, t; x′, t′) =⎧⎨
⎩ F̂ (0)(x,∇x) − ∂

∂x

∫
�

dy β h(1)(x, y)P (y, t − τ |x, t; x′, t′)

⎫⎬
⎭

× P (x, t; x′, t′), (9)

which is the desired Fokker–Planck-like evolution equation for 
P (x, t; x′, t′).

In what follows, we will proceed in analogy to the pertur-
bation theoretical method for the first order statistics developed 
earlier [59]. Accordingly, we put

P (x, t; x′, t′) = P (0)(x, t; x′, t′) + βε(x, t; x′, t′)
+ β2χ(x, t; x′, t′) + O (β2). (10)

P (0)(x, t; x′, t′) is the joint probability density in zeroth order of 
the small parameter β . The function ε is the first order correction 
function. In Eq. (10), the function χ is a second order correction 
term but it does not capture all second order effects (see be-
low and Ref. [59]). The remaining second order and higher order 
terms are captured by the expression “O (β2)”. Let us introduce 
P (0)(y, t − τ |x, t; x′, t′) as the zeroth order approximation of the 
conditional probability density P (y, t − τ |x, t; x′, t′). Furthermore, 
let us introduce ζ(y, x, x′) as the corresponding first order correc-
tion term of P (y, t − τ |x, t; x′, t′) such that P (y, t − τ |x, t; x′, t′) =
P (0)(y, t − τ |x, t; x′, t′) + βζ(y, x, x′) + O (β2) holds. Substituting 
Eq. (10) and the expansion for P (y, t − τ |x, t; x′, t′) into Eq. (9)
yields

∂

∂t
P (0)

xx′ + β
∂

∂t
ε + β2 ∂

∂t
χ + O (β2) = F̂ (0)

(
P (0)

xx′ + βε + β2χ
)

− ∂

∂x

∫
�

dy β h(1)
[

P (0)

yxx′ + βζ
](

P (0)

xx′ + βε + β2χ
)

+ O (β2),

(11)

where we used the short notations P (0)

xx′ and P (0)

yxx′ for P (0)

xx′ =
P (0)(x, t; x′, t′) and P (0)

yxx′ = P (0)(y, t − τ |x, t; x′, t′). Collecting all 
terms of zeroth order in β , we see that the joint probability den-
sity in zeroth order, P (0)(x, t; x′, t′), satisfies

∂

∂t
P (0)(x, t; x′, t′) = F̂ (0) P (0)(x, t; x′, t′). (12)

Collecting all terms linear in β , we see that the first order correc-
tion term, ε(x, t; x′, t′), can be computed from

∂

∂t
ε(x, t; x′, t′) = F̂ (0)(x,∇x)ε(x, t; x′, t′)

− ∂

∂x

∫
�

dy h(1)(x, y)P (0)(y, t − τ |x, t; x′, t′)P (0)(x, t; x′, t′).

(13)
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