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Abstract

We present theoretical analysis of plasmon dispersion in two-walled metallic carbon nanotubes in the presence of low-frequency electromag-
netic radiation, based on classical electrodynamic formulations and linearized hydrodynamic model of carbon valence electrons. Calculations
are performed for the transverse magnetic and transverse electric waves, respectively, by solving Maxwell and hydrodynamic equations with
appropriate boundary conditions.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Since the discovery of carbon nanotubes by Iijima [1], a lot of experimental [2–5] and theoretical [6–19] work has been done to
study the collective electronic excitations in these systems. Lin and Shung [6] evaluated the dielectric function within the random
phase approximation (RPA), the zeros of this function define the plasmon modes. They have found uncoupled acoustic and optical
plasmon branches for zero and nonzero angular momentum changes, respectively. In their recent paper Lin and Shyu [7] replaced
the two-dimensional confinement by a tight-binding model but only for the π electrons and described low-frequency electronic
excitations in carbon nanotubes, then Ho et al. [8] studied the effects of the intertube atomic overlaps and the intertube Coulomb
interactions on low-frequency electronic excitation in two-walled armchair carbon nanotubes (2WNT). Longe and Bose [9] used
the two-dimensional model with the (RPA) for single-walled nanotubes (SWNT) and a classical dynamical model for multi-walled
nanotubes (MWNT) to calculate the dielectric function and the dispersion relations for the collective oscillations and found one
acoustic and several optical branches. The calculation of plasmon dispersion in a MWNTs was first presented in [9]. With a classical
hydrodynamic model, Yannouleas et al. [10] and Jiang [11] studied the collective excitation behaviours of σ and π electrons for
single and multi-walled nanotubes. Recently, Perez and Que [12] showed that the plasmon dispersions can depend strongly on the
chirality of carbon nanotubes. The non-dispersive modes could be due to chiral nanotubes, and the dispersive mode should be due to
armchair and zigzag nanotubes. In Fig. 2 of that paper, one can see that the (16, 3) tube has only optical modes, while the (10, 10) and
(18, 0) tubes each have an acoustic mode. This is because the (16, 3) tube is semiconducting while the other tubes are metallic. The
plasmon modes are localized collective electronic oscillations that can be excited by charged particles or electromagnetic radiation.
Mowbray et al. with hydrodynamic model, studied interactions of fast charged particle with carbon nanotubes and calculated the
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plasmon dispersion for a SWNT using the two fluid model [13] and a 2WNT using a single fluid model [14], then Chung et al.
[15] planed on calculating the plasmon energies for a MWNT using the two fluid model. In recent studies of electromagnetic wave
propagation in SWNT [16], it has been shown that dispersion behaviours of the TE and TM modes are quite similar and dispersion
relation of the two types of modes are similar with that of the well-known electrostatic collective excitations [10], which has a
dimensionality crossover from a 1D system to a 2D system. For 2WNT the coupling between the two layers leads to important
modifications. In the present work, based on a linearized hydrodynamic theory and classical electrodynamic formulations, we show
that the plasmon dispersion in metallic 2WNT can be obtained in the presence of low-frequency electromagnetic radiation with
transverse magnetic and transverse electric modes.

2. Formulation of the problem

We consider a infinitely long and infinitesimally thin 2WNT, with radii a1 < a2. Let us assume that the density of free-electron
fluid over the each cylindrical surface (per unit area) is n0 = 4×38 nm−2, corresponding to four valence electrons per carbon atom.
We use cylindrical coordinates x = (r,φ, z) for an arbitrary point in space, and define xj = (aj ,φ, z) to represent the coordinates
of a point on the cylindrical surface r = aj (with j = 1,2). Assuming that nj (xj , t) is the perturbed density (per unit area) of the
homogeneous electron fluid on the j th wall, due to propagation electromagnetic wave with frequency ω, along the nanotube axis z.
Based on the linearized hydrodynamic model, one obtain the linearized continuity equation, for each j [17],

(1)
∂nj (xj , t)

∂t
+ n0∇j · uj (xj , t) = 0,

and the linearized momentum-balance equation,

(2)
∂uj (xj , t)

∂t
= − e

me

E(xj , t) − α

n0
∇j nj (xj , t) + β

n0
∇j

[∇2
j nj (xj , t)

]
,

where E(xj , t) = Ezêz + Eφ êφ is the tangential component of the electromagnetic field on the cylindrical surface for each j ,
e is the element charge, me is the electron mass, uj (xj , t) is the velocity of the electrons residing on the j th shell and ∇j =
êz(∂/∂z) + a−1

j êφ(∂/∂φ) differentiates only tangentially to that surface. In the right-hand side of Eq. (2), the first term is the force
on electrons due to the tangential component of the total electric field, evaluated at the nanotube surface r = aj , the second and
third terms arise from the internal interaction force in the electron fluid with α = υ2

F /2 is the square of the speed of propagation
of density disturbances in a uniform 2D homogeneous Thomas–Fermi electron fluid [with the Fermi speed υF = (2πn0a

2
B)1/2υB ]

and β = (aBυB)2/4. Here aB and υB are the Bohr radius and the Bohr velocity, respectively. The electric field vector E(x, t) and
the magnetic field vector B(x, t) can be expanded in the following Fourier forms

(3)E(x, t) =
+∞∑
−∞

+∞∫
−∞

dq Em(r, q)ei(mφ+qz−ωt),

and

(4)B(x, t) =
+∞∑
−∞

+∞∫
−∞

dq Bm(r, q)ei(mφ+qz−ωt).

From Eqs. (1) and (2) after the elimination of the velocity uj (xj , t), one obtain

(5)nj (xj , t) =
+∞∑
−∞

+∞∫
−∞

dq Njm(q)ei(mφ+qz−ωt),

where

(6)Njm = − ien0
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and

(7)Ωjm = ω2 − α
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.

By using Maxwells equations, one obtain the following Helmholtz equations for the z-components Ezm and Bzm of the expanding
coefficients Ezm and Bzm

(8)
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= 0,
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