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Complete multiplier statistics explained by stochastic cascade processes
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Abstract

The prevalent understanding of fully developed turbulence is that of a cascade in which vortices successively break up into smaller ones. Based
on this idea, theoretical developments were often concerned with multiplicative random cascade processes. We focus on the velocity fluctuations
and derive a closed as well as complete statistical description of the underlying velocity multipliers using a Fokker–Planck equation, which is
estimated directly from experimental data. This shed new light on the statistics of multipliers and their often assumed independence. For the
heavy-tailed statistical features of the multipliers, close to a Cauchy distribution, no intermittency of turbulence is needed.
© 2007 Elsevier B.V. All rights reserved.
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Intermittency, i.e. the extraordinary frequent occurrence of
strong velocity fluctuations on small scales, is the most de-
bated problem in fully developed turbulence. The predominant
understanding of this phenomenon is based on a cascading
process, where vortices successively break up into smaller ones,
although Richardson’s original cascade picture has undergone
substantial changes during the last time, cf. [1,2]. The descrip-
tion of this transition from large to small scales by an iterative
multiplication with random variables—a multiplicative random
cascade process—had led to many theoretical developments [1,
3,4]. Similar processes also describe complex hierarchical sys-
tems encountered in other fields of science such as economy
[5], geology [6] and computer science [7].

In turbulence multiplicative processes describe either the en-
ergy cascade or the velocity fluctuations [1,8–10]. In this Letter
we focus on velocity multipliers

(1)wn := un+1

un
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as the ratio of longitudinal velocity increments un ≡ u(x +
rn/2) − u(x − rn/2) over a scale rn.

Kolmogorov has formulated in his famous 1962s paper three
alternative hypotheses to the initially provided ones in the log-
normal model which are based on assumptions of velocity mul-
tipliers [10]. They state in essential that multipliers are statisti-
cally independent for large scale-separation (third hypothesis)
and that they are scale-invariant for high Reynolds numbers.
But his predicted log-normality cannot be found in practice. In
[9] it was pointed out that the multipliers’ distribution of veloc-
ity increments is Cauchy-distributed and has short correlations.

The statistical properties of multipliers play a fundamental
role in the scaling theory of multiscale correlation functions
and the therein used fusion rules. A central assumption in this
theory is that the velocity fluctuations on small scales are statis-
tically independent of the velocity fluctuations on large scales
or equivalent that the multipliers are uncorrelated. Corrections
to the predicted scaling behavior are given by geometric con-
strains (‘ward identities’), see for example [11,12].

In this Letter we estimate the complete multiplier statistics
from experimental data and give an explicit expression of the
n-scale joint probability distribution p(wn, . . . ,w1). This allow
us to discuss in detail the important role of correlations and the
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contribution of intermittency. We derive the multiplier statistics
by using the observation that the statistics of the small-scale
turbulent velocity field can be described by a Fokker–Planck
equation [13–15].

We verify our results with two experimental data sets. The
first one is measured in a wake behind a cylinder. The Reynolds
number is 13 000 and the set consists of 1.25 × 106 data points;
for further details see [16]. The results presented here are from
this data set. For comparison we use data measured in a cryo-
genic free jet at Reynolds number 757 000, for further details
see [14,17].

1. Fokker–Planck description of the turbulent cascade

The small-scale turbulence can be characterized by veloc-
ity increments ur := u(x + r

2 ) − u(x − r
2 ), which describe the

fluctuations of the velocity field on different scales r . Increment
statistics are often characterized by means of structure functions
〈un

r 〉 ∝ rξn , which are mainly equivalent to the simple probabil-
ity distribution p(ur, r). For a more detailed examination of the
small-scale turbulence it is of interest to consider joint proba-
bilities, i.e. p(un, rn;un−1, rn−1; . . . ;u1, r1), where ui are the
increments on the scale ri with common reference point x. Due
to the large number of variables involved, this joint distribution
cannot be estimated directly from data. But in [13] and refer-
ences therein, it has been shown that the increments ur obey a
Markov process in r , i.e. the joint probability can be expressed
by the conditional probabilities,

p(un, rn;un−1, rn−1; . . . ;u1, r1)

(2)= p(un, rn|un−1, rn−1) · · ·p(u2, r2|u1, r1)p(u1, r1).

The conditional distributions p(un+1, rn+1|un, rn) are given by
a Kramers–Moyal expansion, which, as it was shown for ex-
ample in [13], truncates after the second term, resulting in a
Fokker–Planck equation1

−r
∂p(u, r|u′, r ′)

∂r

(3)=
(

− ∂

∂u
D(1)(u, r) + ∂2

∂u2
D(2)(u, r)

)
p(u, r|u′, r ′).

Both coefficients, the drift term D(1) and the diffusion term
D(2), can be estimated via the Kramers–Moyal coefficients di-
rectly from measured time series, see [16]. Typically, the co-
efficients have the following dependence on u: D(1)(u, r) =
γ (r)u, D(2)(u, r) = α(r) + αu(r)u + αuu(r)u2 (the upper u

is an index denoting the order of the coefficient). The term
αu(r)u describes the skewness of the probability distribution,
the term αuu(r)u2 the intermittency. The r-dependence is given
by α(r) = α1r and γ (r) = γ0 + γ1r , see [16].

1 Note that, in contrast to the usual definition as, for example, given by [21],
we multiply both sides of the Kramers–Moyal expansion by the scale r . This
is equivalent to the logarithmic length scale λ = ln(L/r) used by [15]. The
negative sign of the left-hand side is due to the direction of the cascade toward
smaller scales r .

It is important to note that every step of the derivation of the
Fokker–Planck equation has been checked by us on data. This
means that there are no assumptions in the derivation which
are not compatible to experiments. In detail: we have tested
the Markovian properties for different scales and for different
flows, they are well fulfilled. Higher order Kramers–Moyal co-
efficients are small so that the general expansion reduces to the
Fokker–Planck equation. Finally, it has been shown that the in-
crements’ distribution, as well as the joint distribution of the
measured increments is well described by the Fokker–Planck
equation.

Next, we consider an essential simplification and neglect the
skewness and the intermittency term of the diffusion coefficient,
i.e. we set D(1)(u, r) = γ (r)u and D(2)(u, r) = α(r). This is
motivated by the fact that the Cauchy distribution results from
the ratio of symmetric, normal distributed stochastic variables;
a detailed explanation is given below. Then, the solution of the
Fokker–Planck equation can be given by a Gaussian distribution

(4)p(u, r|u′, r ′) = N exp

(
−u2

a
+ 2bu′

a
u

)
.

Inserting this in the Fokker–Planck equation (3), the functions
a, b and N are given by the differential equations

(5)r
∂N

∂r
= −γN + 4

αb2u′2

a2
N + 2

α

a
N,

(6)r
∂b

∂r
= γ b

and

(7)r
∂a

∂r
= 2γ a + 4α.

The solutions of these differential equations are:

(8)a(r) = −4α1

r∫
r ′

(
r

s

)−2γ0

exp
(−2γ1(r − s)

)
ds,

(9)b(r) =
(

r

r ′

)−γ0

exp
(−γ1(r − r ′)

)
.

The equation for N is just the normalization condition

(10)N = 1√
aπ

exp
(−b2u′2/a

)
.

So far we have used the Markovian properties of the velocity
increments and their statistical description by a Fokker–Planck
equation to derive an expression for the conditional probabil-
ity distribution p(u, r|u′, r ′), see Eq. (4). Next, we will use
this result to derive the distribution of the multipliers and their
multi-scale statistics.

2. Derivation of the multipliers’ Cauchy distribution

From the Fokker–Planck equation the statistics for each
combination of increments can be derived. The distribution
p(w) of the multiplier wn, see Eq. (1), can be derived from



Download English Version:

https://daneshyari.com/en/article/1863301

Download Persian Version:

https://daneshyari.com/article/1863301

Daneshyari.com

https://daneshyari.com/en/article/1863301
https://daneshyari.com/article/1863301
https://daneshyari.com

