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Abstract

This Letter deals with the concepts of co-operation and support among neurons existing in a network which contribute to their collective
capabilities and distributed operations. Activational dynamical properties of these networks are discussed.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Neural network models are gaining much popularity as they are capable of catering to the needs of a variety of fields due to their
wide range of applications and effective way of approaching a solution [1,2]. In order to deal with more complex problems of the
real world, there is always a growing demand for new and appropriate classes of neural networks.

In the present Letter, we propose a new class of neural networks. We provide the mathematical models of these networks
representing them as dynamical systems. We designate these networks as co-operative and supportive neural networks. In the
literature, networks termed as co-operative, collective, composite, hierarchical networks and with similar other titles are available
([1,3–16]) but the sense in which we have used these terms will be seen in our subsequent discussion.

We observe that these models are also suitable for systems exhibiting a hierarchy. Thus, our models find applications in indus-
trial information management, financial, and economic systems, which involve distribution and monitoring of various tasks. The
motivation for the formulation of these models stems from the following observation.

Suppose a task to be completed is assigned to a system say S1. System S1 may or may not be able to complete the task on its
own. Also, S1 may require the support of another system say S2 to complete the task. Thus, the completion of the task depends
on S2.

S1 is a motivation for S2 as well as dependent on S2. S2 may have its own tasks to complete but always supports S1. In other
words, S2 shares some of the tasks of S1 or S1 distributes some of its jobs to S2.

Following are some commonly found examples:

1. Various parts of a machine manufactured by different ancillary units are assembled together at the main unit.
2. Development of a software product that involves coding, testing and implementation. Each of these sub-tasks is carried out by

separate teams to complete the development to bring out a product.
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This makes us to think of two neuronal fields Fx and Fy in which, x is a network that is in Fx and y in Fy . Assume, x is assigned
a task. That is x is the system S1 depicted above. As assumed earlier, the neurons in the network x may not solely complete this
task. Either x needs some direction or some expert consultation from network y. Otherwise, we suppose that the task is too large
and x allocates some part of it to its subsidiary y. In other words, y is such a field that has some affinity towards x and x naturally
assigns some of its responsibilities to y. Thus, there is an established interconnection between x and y.

It may also be true that not all neurons in y have connections with all neurons in x and vice versa (in which case it resembles a
Hopfield BAM network). To be specific, we state that each neuron xi in X has its own subgroup of neurons {yik }, k = 1,2, . . . , ri ,
in Y (1 � i � m, 1 � ri � n (say)). Schematically, our network may be represented as

Here each xi is identified along with its own subgroup {yik }.
This Letter is organized as follows. In Section 2, we formulate the mathematical model and provide various combinations of the

subgroup neurons. Section 3 deals with the basic properties of the dynamical systems described in Section 2. Also the existence and
non-existence of equilibrium patterns for the system are discussed here. Section 4 deals with the stability of equilibria (when they
exist). In Section 5, we present various modified models of the networks described in Section 2 for the benefit of active researchers
for further exploration. A discussion in Section 6 concludes the study.

2. The model

As explained in the earlier section, let xi , i = 1,2, . . . ,m, denote a typical neuron in X and {yik , k = 1, . . . , ri} denote a subgroup
of neurons attached to xi . The activation dynamics of xi in X and that of yik are given by

x′
i = −aixi +

n∑
j=1

bijfj (xj ) +
ri∑

k=1

ciik gik (xi, yik ) + Ii, i = 1, . . . ,m,

(2.1)y′
ik

= −cikyik +
ri∑

k=1

dikhik (yik ) + Jik , k = 1, . . . , ri , 1 � ri � n.

In (2.1), ai denotes the rate of passive decay of the neuron xi , bij denotes the synaptic connection strengths between xj and xi .
ciik is the rate of distribution of information between xi and yik . Also it denotes the connection strength between xi and its subgroup
element yik . cik is the passive decay rate of the neurons yik and dik is connection strength (rate of interaction) of yik ’s of the subgroup
(network) y. Ii and Jik are the exogenous inputs in each case.

If n denotes the number of neurons in field Fy , then we have:

(i) if r1 + r2 + · · · + rm < n, then at least some neuron in Fy has no connection with network X;
(ii) if r1 + r2 + · · · + rm = n, then each xi has a disjoint class of yik ’s attached to it;

(iii) if r1 + r2 + · · · + rm > n, at least some neuron in y has links with more than one xi in X.

2.1. Response functions

The response functions gik , fj , hik may be chosen from a very general class of functions which allow the dynamical system (2.1)
to have continuable solutions.

In particular, we may have:
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