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We study the ergodic properties of a two-dimensional self-gravitating system using molecular dynamics 
simulations. We apply three different tests for ergodicity: a direct method comparing the time average 
of a particle momentum and position to the respective ensemble average, sojourn times statistics and 
the dynamical functional method. For comparison purposes they are also applied to a short-range 
interacting system and to the Hamiltonian mean-field model. Our results show that a two-dimensional 
self-gravitating system takes a very long time to establish ergodicity. If a Kac factor is used in the 
potential energy, such that the total energy is extensive, then this time is independent of particle number, 
and diverges with 

√
N without a Kac factor.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

N-body systems with long-range interactions have some pe-
culiarities with respect to systems with short-range interac-
tions, having drawn much attention at least along the last two 
decades [1–5], and for a longer time if one considers self-
gravitating systems and charged plasmas. Starting from a non-
equilibrium configuration, a short-range interacting system evolves 
to thermodynamic equilibrium in a relatively small relaxation time, 
while a long-range interacting system evolves over different stages 
characterized by time-scales differing by orders of magnitude, and 
taking a very long time to reach thermodynamic equilibrium for a 
finite number of particles. The initial stage of evolution is a violent 
relaxation into a Quasi-Stationary State (QSS) in a time roughly in-
dependent of the number of particles [6]. The relaxation time to 
thermodynamic equilibrium diverges in the N → ∞ limit (Vlasov 
limit) and gets trapped in a non-equilibrium non-Gaussian station-
ary state.

A pair interaction potential is long-ranged if it decays at long 
distances as r−γ with γ < d, with d the spatial dimension and r
the inter-particle distance. This implies that all particles, no matter 
how far, contribute to the total energy. Consequently the system is 
non-additive, violating the fundamental axiom of thermodynamics: 
non-additivity of entropy. It is worth remembering that this is not 
in contradiction with the second law of thermodynamics, which is 
always valid [7]. Another common consequence is non-ergodicity, 
most extensively studied for the Hamiltonian mean field model [8,
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11–17], but also for one- and three-dimensional self-gravitating
systems [19–23]. Quite curiously, and up to the authors knowl-
edge, no previous detailed study was devoted to the ergodicity 
of the two-dimensional case, at least not in the sense discussed 
here. In the Vlasov limit, the dynamics of the system is exactly de-
scribed by the Vlasov equation, which is essentially the Liouville 
equation for the one-particle distribution function evolving in the 
mean-field due to all other particles, and given by [24,25]:

d

dt
f (p, r; t) =

(
∂

∂t
+ p

m
· ∂

∂r
+ F(r; t) · ∂

∂p

)
= 0, (1)

where f (p, r; t) is the one-particle distribution function, p and r
the momentum and position vectors in d spatial dimensions, re-
spectively, and

F(r; t) = − ∂

∂r

∫
dr′ V (r − r′), (2)

is the mean field force at position r and time t with V (r − r′) the 
inter-particle potential. For finite N the right-hand side of Eq. (1)
does no longer vanish and is given by the pertinent collisional con-
tributions (granularity effects) [26]. For a long-range interacting 
system the thermodynamic limit is ill defined [27], and the Vlasov 
limit can be taken consistently by introducing a Kac factor 1/N in 
the interaction potential, such that the energy becomes extensive, 
but still non-additive, and that the N → ∞ limit converges [28].

The study of ergodicity was pioneered by Boltzmann in his 
works on the foundations on Statistical Mechanics [29], and latter 
extended by Birkhoff [30] and Khinchin [31]. The ergodic hypoth-
esis states that time average of a dynamical functions b(x) equals 
the ensemble average:
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lim
t f →∞

1

t f − t0

t f∫
t0

dt b(xt) ≡ b(x) = 〈b(x)〉 ≡
∫

dμ0 b(x), (3)

where x denotes a point in the system state space (or phase space 
for a Hamiltonian classical system), b(x) is the time average of 
b(x), 〈b(x)〉 its ensemble average and dμ0 a statistical measure. 
Proving ergodicity rigorously is a difficult task and has been ac-
complished only for a few cases. Most studies rely on different 
methods such as determining the existence of gaps in phase-
space [11,12], direct comparison of time and ensemble averages 
for the momentum variable [13], sojourn time statistics for cells in 
phase-space [18,32,33], testing for equipartition of energy [19,20,
34] and the dynamical functional approach [35–37]. The latter can 
also be used to determined weather the system is mixing, which 
is a stronger property than ergodicity. The dynamics of a system is 
mixing in its phase-space S if for an invariant measure μ, T a map 
preserving μ and s1, s2 ⊂ S , we have that [39]:

μ(s1)

μ(S)
= lim

k→∞
μ(s2 ∩ Tks1)

μ(s2)
. (4)

Non-ergodicity can also be classified as strong if some regions of 
phase-space are non-accessible to the system and weak if all re-
gions are accessible but not equally visited.

Ergodicity can be studied in two complementary ways. The 
first possibility is to consider the evolution in phase space of the 
N-particle system, with time averages computed over the trajec-
tory of the point representing the state of the whole system. En-
semble averages are then obtained by considering all points in the 
energy hypersurface as equally probable, i.e. for the microcanoni-
cal equilibrium. This is equivalent to state that the total time spent 
in a phase-space region is asymptotically proportional to its mea-
sure. The other possibility is to consider single particle histories as 
realizations of a stochastic process. In this case time averages are 
taken over one particle history, while ensemble averages are taken 
over the set of all N particles. This approach is particularly suited 
for a direct experimental verification even for short-range interact-
ing systems [38]. In this case ergodicity, i.e. the coincidence of the 
time and ensemble averages is not equivalent to thermodynamic 
equilibrium as will become evident below. We consider the lat-
ter case in the present work, with S in Eq. (4) the one-particle 
phase-space, for a system composed by a single particle evolving 
in a stationary potential, either in the thermodynamic equilibrium 
or in a (quasi-)stationary state.

In this paper we first briefly study a gas of elastic hard-discs as 
an example of short-range interacting system, and then revisit the 
ergodic properties of the Hamiltonian Mean Field (HMF) model ex-
tending the results of Ref. [13] to include non-homogeneous quasi-
stationary states. Both system are used as comparison standards 
for our main interest here, a two-dimensional self-gravitating 
N-body system. The HMF model is formed by N particles on a 
circle with Hamiltonian [8]:

H =
N∑

k=1

p2
k

2
+ 1

2N

N∑
k,l=1

[1 − cos (θk − θl)] , (5)

where θk is the position angle on particle k and pk its conju-
gate momentum. It is a solvable model at equilibrium [8,9] at its 
dynamics can be simulated with a smaller computational cost if 
compared to other long-range interacting systems [10] and widely 
studied in the literature (see [1–4] and references therein). A 
two-dimensional self-gravitating system with N identical particles, 
as described by the Hamiltonian:

H =
N∑

k=1

p2
k

2
+ 1

2N

N∑
k,l=1

ln (|rk − rl| + ε) , (6)

where the logarithmic potential is the solution of the Poisson 
equation in two dimensions [42], all masses are set to unity and 
ε is a softening small parameter, commonly used in simulations 
of self-gravitating systems to avoid the divergence in the potential 
at zero distance [55]. Note that we use a Kac factor 1/N in the 
potential.

The potential in Eq. (6) is not upper bound and is therefore con-
fining, consequently avoiding the difficulty of particle evaporation 
in three-dimensional gravity. This model was used for instance in 
the study of anomalous diffusion in a collapsing phase [43], the 
determination of thermodynamic equilibrium properties [44], col-
lisional relaxation [25,45], violent relaxation [42,46] and cooling in 
self-gravitating accretion discs [47].

The structure of the paper is as follows. In Section 2 we suc-
cinctly present the methods for testing ergodicity used in the 
present work, and apply then to a two-dimensional hard-disc gas 
in Section 3, and to the HMF model in Section 4. The ergodic prop-
erties of a two-dimensional self-gravitating system are discussed 
in Section 5. We close the paper with some concluding remarks in 
Section 6.

2. Testing ergodicity

2.1. Direct method

We consider the time evolution of a single particle to compute 
time averages while ensemble averages are obtained by taking the 
average over the N particles in the whole system. For an ergodic 
system both quantities coincide. Let us then consider the momen-
tum pk(t) of particle k and its position xk(t) at time t and write 
their time averages as:

pk(t) = 1

n

n∑
j=0

pk( j�t), (7)

and

xk(t) = 1

n

n∑
j=0

xk( j�t), (8)

respectively, where �t is a constant time interval, that we take as 
being the numeric integration time step and m is the total number 
of such intervals. The time averages are computed up to a given 
time t denoted by the argument of pk(t) and xk(t). On the other 
hand, ensemble averages at time t are given by

〈p(t)〉 = 1

N

N∑
i=0

pi(t), (9)

and

〈x(t)〉 = 1

N

N∑
i=0

xi(t). (10)

For an ergodic system pk and xk are the same for all particles, and 
therefore the standard deviations:

σp(t) =
√√√√ 1

N

N∑
k=1

pk(t)2 − 〈p(t)〉2, (11)

and

σx(t) =
√√√√ 1

N

N∑
k=1

xk(t)2 − 〈x(t)〉2, (12)
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