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We implement a double stochastic process as the mathematical model for the spatial point patterns of 
urban facilities. We find that the model with power covariance function can produce the best fit not only 
to K function (whose derivative gives the radial distribution ρ(t) = K ′(t)/2πt) but also to additional facts 
of spatial point patterns. These facts include the mean-variance relationship of number of events in a 
series of expanding bins, and other statistics beyond the first two orders, such as inter-event distribution 
function H(t) and nearest neighbor distribution functions G(t) and F (t).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The rapid urbanization becomes one of the predominant pro-
cesses in the human history. It arouses much interest to study 
cities and urban lives in the scientific communities [1,2]. Like many 
other physical systems, despite the complex underlying structure, 
macro statistical regularities such as power laws emerge [1,3]. 
With the increasing ability to collect the spatial coordinate data of 
facilities and buildings from electronic map providers, researchers 
begin to study the spatial substructure of cities. It is reported in 
[4] that K -function (whose derivative gives the radial distribution 
function ρ(t) = K ′(t)/2πt) is a power function. Besides, the mean-
variance relationship of number of events in a series of expanding 
bins is also a power function. These empirical results can be em-
bedded in a double stochastic process model when the covariance 
function is a power function.

Scientific interest in power law relations stems partly from the 
possibility that the power function might point to a deep origin 
in the dynamical process that generates the power law relation. 
Unfortunately, the detection and characterization of power laws 
are complicated by the large fluctuations that occur in the tail of 
the distribution and by the difficulty of identifying the range over 
which power law behavior holds [5]. The fact that actual physical 
systems are finite also hinders the test of power laws which char-
acterizes long range interactions. As [6] points out, one should not 
only consider a detailed mechanism in driving dynamics, but also 
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the extent of statistical support for a reported power law. The lin-
ear relationship on a log–log plot is clearly established for urban 
facilities in [4] over more than 2 orders of magnitude, however 
the considered statistics K -function and mean-variance relation-
ship only capture the statistical properties of the first two orders. 
They do not give a complete picture. As an illustration of the in-
sufficiency of second-order statistics, Ref. [7] describes a class of 
non-Poisson processes however for which K (t) = πt2 coincides 
with the Poisson random process. Besides, the empirical evidence 
from K -function is not strong enough to support the power laws. 
Except for the power function, there are many other functions that 
can give good fit to K (t). The power law rule would be on a more 
solid basis if the model estimated from the first and the second 
order statistics fits other statistics including higher order statistics.

Higher order statistics can be defined in terms of the joint in-
tensity functions for the occurrence of specified configurations of 
three, four, etc. events. Interpretation would be difficult in practice 
since, for example, the third-order intensity functions of a station-
ary, isotropic process requires three arguments, the fourth-order 
function, five, and so on. There are several distribution functions 
which are easy to interpret. They can serve as additional statistics 
summary of spatial point process. These are H(t) the distribution 
function of inter-event distance, G(t) the distribution function of 
the distance from an arbitrary event to its nearest other event, and 
F (t), the distribution function of the distance from an arbitrary 
point to its nearest event [8].

Except these statistics, mean-variance relationship can also 
serve as a statistical method to compare models. Denote M and V
as the average and variance of number of events in a series of ex-
panding bins, respectively. As shown in [4], the power law rule of 
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mean-variance relationship V = aMb is a natural result of a double 
stochastic model if the K -function is given as K (t) = πt2 + K0t f . 
Besides, their exponents are related by b = 1 + f /2.

The idea of this paper is to implement a double stochastic 
model which can generate random samples in resemblance to the 
actual point pattern of urban facilities. Then we propose some 
other covariance functions in addition to the power function to 
fit the K -function. We compare these models in their capability to 
fit additional second order statistics such as mean-variance rela-
tionship, and other statistics beyond the first two orders, such as 
inter-event distribution function H(t) and nearest neighbor distri-
bution functions G(t) and F (t).

2. Choice of covariance function

A double stochastic process (DSP) model is introduced to model 
the spatial structure of urban facilities [4]. The DSP model as-
sumes that there are two layers of stochastic process. The first 
layer stochastic process is a correlated random field of density 
function �(x), which models the inhomogeneous concentration of 
facilities in a city. Conditional on the density, the location of urban 
facilities is based on a Poisson process. The DSP model simulates 
the growth process of urban facilities in the sense that urban fa-
cilities are evolving stochastically on top of an existing structure of 
a city, while the city structure itself follows a separate stochastic 
process.

A relatively flexible and tractable construction to encompass the 
non-negative constraint for density processes is log-Gaussian pro-
cesses [9], i.e., the density function is drawn from a log-Gaussian 
random process �(�x) = exp(S(�x)). S is assumed to be a stationery 
isotropic Gaussian, S(�x) ∼ N (μ, σ 2). Its spatial dependence is 
given by its covariance density Cov(S(�x), S(�x + �u)) = σ 2r(|�u|). The 
first and second order statistics of S and � fields are related by 
m = E[�(�x)] = exp(μ + σ 2/2), and γ (|�u|) = Cov(�(�x), �(�x + �u)) =
exp(2μ + σ 2)[exp(σ 2r(�u)) − 1].

The radial distribution function ρ(t) = (2πt)−1 K ′(t) are related 
to the second order statistics of S and �(�x) by

σ 2r(t) = log(ρ(t)) (1)

γ (t) = m2(ρ(t) − 1) (2)

Now, we propose 3 models of the radial distribution function 
ρ(t) as

ρ1(t) = 1 + θ11(1 + t2)−θ12/2 (3)

ρ2(t) = 1 + exp (θ21 − θ22t) (4)

ρ3(t) = exp(θ31 exp (−θ32t)) (5)

These different models of ρ(t) are hereafter referred as m1, m2 
and m3 respectively. The radial distribution function ρ1(t) of m1 
is actually a power function ρ1(t) ∝ 1 + θ11t−θ12 at large val-
ues of t . 1 is added to avoid the divergence at t = 0. Note that 
for m1 K (t) = πt2 + θ11

1−θ12 t−θ12+1, which is the model suggested 
in [4]. Note that m2 is the first order expansion of m3 ρ3(t) ≈
1 + θ31 exp(−θ32t) + O (exp(−2θ32t)). Therefore, the covariance of 
both m2 and m3 are exponential function, which dies quickly as t
increases and the interaction between events are short-ranged.

3. Results

Similar to [4], we take banks in Beijing as an illustrative exam-
ple. We present the original spatial data of banks in Fig. 1(a). The 
data is constrained to the metropolitan area of Beijing, which cov-
ers 214 × 214 m2. We map the data to a 210 × 210 lattice by taking 
a transformation of the coordinate x of each point as x′ = [x/24], 
rounded to the nearest integer.

Fig. 1. (a) Original locations of banks in a metropolitan area of Beijing (214 ×214 m2) 
mapped to a (210 × 210) lattice; a random sample of the point pattern generated 
from the DSP when the radial distribution function ρ(t) is given by: (b) Eq. (3); 
(c) Eq. (4); (d) Eq. (5).

The estimation of ρ(t) is not convenient in the spatial analysis 
of point patterns. Knowing that

K (t) =
∫ t

0
ds2π sρ(s) = m−1E[N0(t)] (6)

where N0(t) is the number of further events within distance t of 
an arbitrary event, we estimate the models by fitting K (t).

Denote K̂ (t) the estimator calculated from the data after edge 
correction is applied to the square window in our case, and K (t, θ)

the theoretical K-function. θ is estimated to minimize the square 
error J = ∑I

i=1(K̂ (ti) − K (ti, θ))2/I between K̂ (t) and K (t, θ). We 
choose 26 ti s spanning from 5 to 500 units (each unit is 16 me-
ters) which are separated in such a way that they are somehow 
uniformly distributed in log space to give more emphasis on small 
ts as shown in Fig. 2. From the figure, all three models fit the data 
quite well in the large range from 100 meters to 7000 meters. 
There is a slight difference when t < 300 meters as one can see 
from the log–log plot in the sub-window. The log–log plot shows 
that m1 fits slightly better than the other two models.

After we fit the models to K (t), we can use the parameters 
to run simulations. Random samples can be generated with the 
Fourier filtering method [10] when the radial distribution function 
(therefore the covariance function σ 2r(t) of S filed) is given. A ran-
dom sample for each model of ρ(t) is depicted in Fig. 1(b), Fig. 1(c) 
and Fig. 1(d) respectively. By first checking the graphs with naked 
eyes, one may conclude that the point pattern generated by m1 
matches closer to the actual pattern of banks than the other two 
models. Rigorous statistical checks are conducted in a later section 
of this paper.

In Fig. 2, we plot the fitting results of three models in one fig-
ure. All three models are nearly indistinguishable in the large range 
of t from 100 meters to 7000 meters. One cannot really tell the 
difference in the regular plot. Although the covariance function for 
m2 and m3 are exponential which would deviate from the power 
function of m1 at large values of t , we cannot reject them based 
on the fitting of K (t) given the finite size of actual physical sys-
tems. Fortunately, there is slight difference when r < 300 meters 
as one can see from the log–log plot in the sub-window of Fig. 2. 
The log–log plot shows that m1 fits slightly better than the other 
two models.

We extend our analysis to include additional statistics to fur-
ther test the goodness of fit of different models. The first one is 
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