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We consider a chain of torsionally-coupled, planar pendula shaken horizontally by an external sinusoidal 
driver. It has been known that in such a system, theoretically modeled by the discrete sine-Gordon 
equation, intrinsic localized modes, also known as discrete breathers, can exist. Recently, the existence 
of multifrequency breathers via subharmonic driving has been theoretically proposed and numerically 
illustrated by Xu et al. (2014) [21]. In this paper, we verify this prediction experimentally. Comparison 
of the experimental results to numerical simulations with realistic system parameters (including a 
Floquet stability analysis), and wherever possible to analytical results (e.g. for the subharmonic response 
of the single driven–damped pendulum), yields good agreement. Finally, we report the period-1 and 
multifrequency edge breathers which are localized at the open boundaries of the chain, for which we 
have again found good agreement between experiments and numerical computations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Discrete breathers, also known as intrinsic localized modes, ap-
pear widely in damped–driven oscillator systems [1,2], and gen-
eral conditions for their appearance have been recently estab-
lished theoretically [3]. Such time-periodic and exponentially lo-
calized in space coherent structures have been observed exper-
imentally in a diverse range of nonlinear oscillator systems, in-
cluding Josephson junction arrays [4,5], coupled antiferromagnetic 
layers [6], halide-bridged transition metal complexes [7], micro-
mechanical cantilever arrays [8,9], electrical transmission lines [10]
and torsionally-coupled pendula [11] among others [12–14]. They 
have also been argued to be of relevance to various biological 
problems including dynamical models of the DNA double strand 
[15], as well as more recently in protein loop propagation [16]. 
Many of the features of the discrete breather response are generic 
across these wide-ranging experimental systems; see e.g. [17]. 
However, the intrinsic properties of a single oscillator (as well 
as, often times, the specific nature of the coupling) may play a 
key role in the observed dynamics and the nature of the discrete 
breathers formed in the different physical systems.
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Inspired by this observation, recent work has revealed that sub-
harmonic resonances of a single oscillator (see e.g. [18]) may be 
used to excite discrete breather formation in an electrical lat-
tice [19]. More recently, this idea has been examined further in 
the context of a horizontally shaken pendulum (which has long 
been known to display a variety of subharmonic resonances [20]), 
and the possibility of mixed-frequency breathers was identified in 
a pendulum chain [21]. These breathers exhibit the remarkable 
response that while energy is localized on a few pendula respond-
ing at a sub-harmonic of the driving force, the pendula in the 
tails of the breather are oscillating with the driving frequency. To 
the best of our knowledge, these theoretically proposed and nu-
merically identified subharmonic breathers in the pendulum chain 
have not yet been experimentally observed. This is one of the key 
goals of the present work. More specifically, we further investigate 
these mixed frequency breathers theoretically, and compute them 
numerically, exploring their spectral and dynamical stability, iden-
tifying suitable frequency intervals where they may be expected to 
persist. We then go on to verify their existence by means of di-
rect experimental observations in a horizontally shaken chain of 
torsionally-coupled pendula [22,11,23].

We also examine the role of breather location in the dynam-
ics and reveal that discrete breathers may be localized at the 
end of the pendulum chain. To the best of our knowledge this is 
the first time the existence of such mechanical oscillator breather 
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Fig. 1. A schematic of the experimental pendulum chain.

edge states has been experimentally demonstrated. Nevertheless, 
it should be noted that research interest in edge states has a long 
history in other fields (see e.g. [25] and references therein), includ-
ing manifestations in the form of electronic surface waves at the 
edge of periodic crystals (Tamm states [25]), optical surface modes 
in waveguide arrays [26], and more recently surface breather soli-
tons in graphene nanoribbons [27].

Our presentation of the relevant results below is structured as 
follows. In Section 2, we present our theoretical model and discuss 
its physical parameters (of relevance to the experiment) for a hor-
izontally shaken pendulum chain. The relevant dynamical equation 
in the form of a damped–driven discrete sine-Gordon system is 
closely related to the driven–damped form of the famous Frenkel–
Kontorova model [24,28]. In Section 3, after theoretically, numeri-
cally and experimentally corroborating the subharmonic response 
of a single pendulum, we seek subharmonic solutions numerically 
and trace their parametric interval of stability. We are then able 
to show their existence experimentally, both in the case of “bulk” 
subharmonic breathers, as well as in the form of edge modes. Fi-
nally, in Section 4, we summarize our findings and present some 
possible directions for future study.

2. The model and experimental setup

The experimental setup is very similar to the one described in 
detail in Ref. [23] and schematically shown in Fig. 1. Each pen-
dulum experiences four distinct torques – gravitational, torsional, 
frictional and driving torque. The driving torque arises due to the 
horizontal shaking of the pendulum array by a high-torque electric 
motor. The amplitude, A, of the sinusoidal driving was fixed in the 
experiment, but the frequency, f = ωd/(2π), was finely tunable (in 
0.05 Hz increments) and measured by magnetic sensing. Angles 
were measured using a horizontal laser beam from a diode laser 
attached to the frame of the pendulum array; this beam is then 
periodically interrupted by the swinging pendulum when properly 
aligned. This method gives an estimated precision of about ±1 deg. 
An overhead web-cam was also used to monitor and record the 
pendulum motion. As a result of the above contributions, the mo-
tion of a single (uncoupled) pendulum is well described by the 
equation,

θ̈ +
(γ1

I

)
θ̇ + ω2

0 sin θ + Fω2
d cos(ωdt) cos θ = 0, (1)

where I is the pendulum’s moment of inertia, I = ML2 + 1
3 mL2, 

the driving strength is given by F = Aω2
0/g , and ω0 is the pendu-

lum’s natural frequency of oscillation with ω2
0 = 1

I (mgL/2 + MgL). 
Experimentally, the number of pendula is N = 19, L = 25.4 cm, 
m = 13 g, M = 14 g, γ1 = 500 g cm2/s, and A = 0.6 cm. Pendula at 
the two ends can oscillate freely (free boundary conditions).

If we add the torsional coupling to nearest-neighbor pendula, 
i.e., in the presence of all four of the above contributions, Eq. (1)
becomes a system of differential equations given by,

θ̈n + ω2
0 sin θn −

(
β

I

)
�2θn +

(γ1

I

)
θ̇n

− γ2

I
�2θ̇n + Fω2

d cos(ωdt) cos θn = 0, (2)

where β is the torsional spring constant, and �2 represents the 
discrete Laplacian. We include an intersite friction term (prefac-
tor γ2) originating from the energy dissipation due to the twisting 
of the springs [11]. Here, we assume that nonlinearity in the un-
driven array enters only through the sine-function in the gravita-
tional term, but not through the coupling springs. This assumption 
seems to be experimentally justified for angle differences of up to 
90 deg, but it may not work well beyond that. Experimental values 
of coefficients are β = 0.0083 Nm/rad and γ2 = 70 g cm2/s. These 
equations can be non-dimensionalized by introducing the follow-
ing parameters ω = ωd/ω0, C = β/Iω2

0, α1 = γ1/Iω0, α2 = γ2/Iω0
and rescaling time t → t/ω0, leading to the following dimension-
less equation for the nth pendulum:

θ̈n + sin θn − C�2θn + α1θ̇n − α2�2θ̇n + Fω2 cos(ωt) cos θn = 0.

(3)

For our experimental conditions the dimensionless parameters are 
C = 0.16, α1 = 64 × 10−4, α2 = 9 × 10−4 and F = 0.026. We use 
these parameters throughout the theoretical investigations of this 
work, and consider only variations in the dimensionless frequency 
parameter ω, which is tunable as indicated above. In our plots we 
transform back to physical units, plotting results versus driving fre-
quency in Hertz, f , where, for reference, the natural frequency of 
our pendulum is f0 = ω0/(2π) = 1.04 Hz.

As numerical simulations have shown that a one-peak breather 
is mainly localized on a single pendulum and its first neigh-
bors, experimentally, the method used to initiate multifrequency 
breathers is by manually displacing a group of three pendula 
through angles roughly predicted by the simulations. Upon release, 
a true breather mode can then sometimes establish itself, depend-
ing on whether the phase of release happened to be sufficiently 
close in relation to the driver. In practice, it may take a number of 
such trials before the driver can lock onto the initialized pendula 
in this manner.

3. Results

We first examine a single damped–driven pendulum. In gen-
eral, we have observed similar behavior to that found in [21], 
where the same system was studied in a slightly different range 
of parameters. Examining the response of the system to different 
frequencies and amplitudes of the driving force, we obtain the res-
onance curves shown in Fig. 2. Since a pendulum is an oscillator 
characterized by soft nonlinearity, we have found experimentally 
and numerically that the resonance curve exhibits the characteris-
tic bend toward lower frequencies, as is theoretically expected [18]. 
At higher frequencies we find the well known pendulum subhar-
monic response [29]. A subharmonic branch starting at around 
three times the natural frequency can be obtained both in the ex-
periment and in the numerics. Here, the pendulum responds to 
the driver by swinging at a frequency that is one-third of the driv-
ing frequency, f . In this way, for every three periods of the shaken 
table, the pendulum performs one complete swing. It is also in-
teresting to note that larger response amplitudes can be achieved 
via subharmonic driving than with direct driving. Numerically we 
have found higher-order resonances, but these resonances corre-
spond to frequencies not accessible in our experimental setup. In 
particular, we have found numerical solutions starting at around 
five and seven times the external driver frequency. Numerical sim-
ulations have shown that subharmonic breathers corresponding to 
these high frequencies are mostly unstable, with the exception of 
frequencies within very narrow intervals close to the starting fre-
quency value.

In order to get approximate analytical solutions to Eq. (1), we 
Taylor-expand the trigonometric functions and obtain (in dimen-
sionless form),
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