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Nonlinear dynamics of a rotating double pendulum
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Nonlinear dynamics of a double pendulum rotating at a constant speed about a vertical axis passing 
through the top hinge is investigated. Transitions of oscillations from chaotic to quasiperiodic and back to 
chaotic again are observed with increasing speed of rotation. With increasing speed, a pair of new stable 
equilibrium states, different from the normal vertical one, appear and the quasiperiodic oscillations occur. 
These oscillations are first centered around the origin, but with increasing rotation speed they cover the 
origin and the new fixed points. At a still higher speed, more than one pair of fixed points appear and the 
oscillation again turns chaotic. The onset of chaos is explained in terms of internal resonance. Analytical 
and numerical results confirm the critical values of the speed parameter at various transitions.

© 2015 Elsevier B.V. All rights reserved.

Fig. 1. A standard double pendulum.

The double pendulum is one of the primary examples of study-
ing Hamiltonian chaos [1]. It is a conserved but non-integrable
system having only one conserved quantity instead of two. The 
system is shown in Fig. 1 in the special case of the two pen-
dulums having the same length and mass. The small amplitude 
motion is quasi-periodic in general and the high energy motion 
which is dominated entirely by the kinetic energy (the maximum 
potential energy is 6mgl if the zero is taken as the freely hang-
ing position) with g → 0, is once again integrable [2]. Chaos in the 
system has been studied primarily for E slightly greater than 6mgl
(when both pendula are capable of undergoing full rotation) [2]. 
It was shown recently that chaos can exist in the system, when 
the energy is much lower (E � 2mgl, only the outer pendulum 
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can rotate), but this is strongly dependent on initial conditions. 
It can be argued that in principle, Kolmogorov–Arnold–Moser theo-
rem will imply initial condition dependent breakdown of tori, but 
the dependence of the low energy chaos in the double pendu-
lum is more systematic [3]. The system has two normal modes 
— “in-phase” and “out-of-phase”. It is the out-of-phase initial con-
ditions that predominantly lead to chaos at low energies. This can 
be linked to a mode softening of the “out-of-phase” mode. In an-
other very well studied non-integrable conservative system — the 
extensible pendulum (also known as spring pendulum), an intrigu-
ing phenomenon was studied two decades ago [4–7]. This was a 
sequence of order–chaos–order transition. This problem is slightly 
simpler to deal with because apart from the energy, there is yet 
another parameter in the problem, the ratio of frequencies of the 
two normal modes of the system — the frequency ω1 of the spring 
vibration and the frequency ω2 of the pendulum motion. The sys-
tem becomes resonant when ω1

ω2
is an integer � 2. The resonant 

condition leads to chaotic motion in the vicinity causing the order 
chaos transition. It is clear that if the ratio is very large, the spring 
is very stiff and is just a perturbative influence on the pendulum 
motion causing the overlapping resonance to disappear. Thus order 
is regained. The lesson to be learnt from this interesting problem is 
that a second parameter can play an important role and as we will 
see a vital role. With this in mind, we introduce a second parame-
ter in the double pendulum via uniform rotation of the system as 
whole about a vertical axis passing through the top hinge. We con-
sider the planar oscillation of the pendulum as seen by an observer 
rotating with the pendulum. The only other work on this double 
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pendulum was carried out by Bridges and Georgiou [8], who con-
centrated on the motions in two different planes. We find over 
here for the low energies (E � 3mgl) the chaos inducing “out-of-
plane” initial conditions provide a chaos–order–chaos sequence as 
the rotation rate is increased.

The Lagrangian of a double pendulum can be written as,

L = ml2θ̇1
2 + 1

2
ml2θ̇2

2 + ml2θ̇1θ̇2cos(θ1 − θ2)

+ 2mgl(cos θ1 − 1) + mgl(cos θ2 − 1) (1)

Here a constant (3mgl) has been deliberately added to make the 
total energy zero at the resting position. It is important to intro-
duce directly the normal modes X1 and X2 through the relations

θ1 = 1

2
(X1 + X2) (2a)

θ2 = 1√
2
(X1 − X2) (2b)

Our experience with the dominant terms of the Lagrangian for 
intermediate amplitude motion leads to an effective Lagrangian

L = ml2[1

2
Ẋ2

1(1 + 1√
2
) + 1

2
Ẋ2

2(1 − 1√
2
) − �2

2
(X2

1 + X2
2)

− ( Ẋ2
1 − Ẋ2

2)

32
√

2
{(2 + √

2)X2 − (2 − √
2)2 X1}2 + . . .] (3)

where, �2 = g
l . It is clear from Eq. (1) that X1 is the “in-phase” 

mode and X2 is the “out-of-phase” mode and from Eq. (3) that the 
frequency associated with X1 is (2 − √

2)
1
2 � and that with X2 is 

(2 + √
2)

1
2 �. The resulting equation of motion (retaining terms of 

cubic order non-linearity only) for the mode under scrutiny, X2, is

Ẍ2 + (2 + √
2)�2 X2 =

(2 + √
2)�2 X2

16
(
√

2 + 1)[(2 + √
2)X2 − (2 − √

2)X1]2

− (2 + √
2)2 Ẋ2

2
X2

16
√

2
+ (2 + √

2) Ẋ2
2

X2

32
√

2
(4)

The effective frequency for this mode X2 is [2 + √
2 − 4A2] 1

2 �

(where A is the amplitude of X2 mode). Here, the X3
2 and Ẋ2

2
X2

terms combine to give the strong mode softening from finite am-
plitude effect. The equation for the mode X1 can similarly be writ-
ten down and it just happens that the amplitude dependence of 
the “in-phase” mode is negligible in the first approximation and 
for our purpose, we will assume X1 = f (t), where f (t) is some 
periodic function with basic frequency (2 − √

2)
1
2 �. We note that 

the frequency ratio of the “in-phase” and “out-of-phase” modes is 
an irrational number (3 − 2

√
2) and hence looking for resonance 

is far more complicated with the double pendulum. The equation 
of motion (Eq. (4)) and can be viewed as the equation of motion 
of a one dimensional system which can always be given a Hamil-
tonian description (the relevant Lagrangian can be obtained from 
Eq. (3) by letting X1 = Ẋ1 = 0 and the Hamiltonian will follow by 
the standard prescription). The coupling of X2 to X1 will be mod-

eled by keeping the term Ẋ2
2

X2 X1 in Eq. (3) and we will arrive at 
a Hamiltonian whose structure for the motion of X2

H = H0(p, X2) + H ′(p, X2, X1(t)) (5)

The structure of H ′ having been explained, it is clear that the 
resonance can happen if the frequency (2 − √

2)
1
2 � equals the ef-

fective frequency [2 + √
2 − 4A2] 1

2 � of the X2 mode, A being the 
amplitude of the mode X2. This leads to A2 = 1√

2
. This clearly 

Fig. 2. (a) Quasi-periodic trajectory, (b) frequency spectrum for θ(0)
1 = 1.2 and θ(0)

2 =
1.2

√
2.

shows that it is possible to have resonance at low energies and 
that opens up the possibility of wide-spread chaos at relatively low 
energies.

We show the relevant results from numerics in Figs. 2–4. In 
Fig. 2a, we show a quasi-periodic trajectory for θ

(0)
1 = 1.2 and 

θ
(0)
2 = 1.2

√
2. The two incommensurate frequencies of the motion 

can be read off from the Fourier Transform shown in Fig. 2b. All 
frequencies are divided by �. In Fig. 3, we show how the frequen-
cies change with energy for pure normal mode initial conditions. 
In Fig. 4, we show a typical chaotic trajectory at E � 2.4mgl.

We differentiate between chaotic and ordered trajectories by 
calculating Largest Lyapunov Exponent (LLE). The computation of 
Lyapunov spectrum is done using the algorithm due to Wolf et 
al. [9]. Two trajectories are considered with and initial separation 
of a very small interval R0. The first trajectory is called the fiducial 
trajectory and the second is called the perturbed trajectory. Both 
are followed together until the separation |R1 − R0| is large enough 
and the LLE can be estimated as λ = 1

�t ln |R1|
|R0| . The perturbed tra-

jectory is then moved back to a separation R0 along the vector 
joining the two end points and the process is repeated N times. 
The average over the N steps gives the Largest Lyapunov Exponent. 
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