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Nonlinear ultrasonic methods have been widely used to characterize the microstructure of damaged 
solids and consolidated granular media. Besides distinguishing between materials exhibiting classical 
nonlinear behaviors from those exhibiting hysteresis, it could be of importance the discrimination 
between ultrasonic indications from different physical sources (scatterers). Elastic hysteresis could indeed 
be due to dislocations, grain boundaries, stick-slip at interfaces, etc. Analyzing data obtained on various 
concrete samples, we show that the power law behavior of the nonlinear indicator vs. the energy 
of excitation could be used to classify different microscopic features. In particular, the power law 
exponent ranges between 1 and 3, depending on the nature of nonlinearity. We also provide a theoretical 
interpretation of the collected data using models for clapping and hysteretic nonlinearities.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear ultrasounds have been proved to be very sensitive 
to the presence of small changes in the microstructure of ma-
terials such as rocks [1], metals [2,3], concrete [4–6], compos-
ites [7], bones [8,9], etc. due to the appearance of microscopic 
defects. They all share typical properties commonly observed in 
experiments concerning the propagation of ultrasonic waves or 
pulses: generation of higher order harmonics [10], subharmonics 
[11] or sidebands in modulation experiments [12]; shift of the 
resonance frequency with increasing amplitude of excitation [13,
14] or with conditioning [15]; loss of proportionality (Scaling Sub-
traction Method – SSM) [16–19], of reciprocity [20] and symmetry 
[21–23], etc.

However, despite the qualitatively common behaviors observed, 
the physical nature of the microstructural imperfections responsi-
ble of the nonlinear elastic response is not unique. For instance 
grain imperfections [24], dislocations [25], closed microcracks [26]
or partially open cracks [27,28] are all known to generate non-
classical nonlinearity. The physical processes at play could be ad-
hesion phenomena [29], clapping mechanisms [30], sliding and 
friction [31], interaction of dislocations with point defects [32], etc. 
To assess the integrity, mechanical properties and residual lifetime 
of the examined element, distinguishing between them is impor-
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tant. Currently, nonlinear ultrasonic methods are not yet providing 
such a distinction.

This is particularly true when considering the evolution of the 
microstructure of a given sample in time. Indeed, applications have 
been reported in the literature considering various processes of 
alteration of the properties of the sample. E.g., in the case of con-
crete, studies have analyzed effects on the material structure of 
mechanical damage induced by quasi-static loads [4,33], chemi-
cally induced cracking due to alkali-silica reaction [5] or salt crys-
tallization [34], exposure to high temperature cycles [6,35], carbon-
ation [36], corrosion of rebar concrete (i.e. concrete bars with the 
addition of a metallic reinforcement rod) [37], etc. Similar consid-
erations are also valid for the analysis of the evolution of imper-
fections in metals and composites.

All these experiments aim to characterize the influence of im-
perfections in the microstructure of the considered sample on the 
nonlinear elastic response to an external excitation. They show a 
quantitative increase of the nonlinearity, measured in terms of a 
nonlinear indicator y analyzed as a function of the energy x excit-
ing the sample. The nonlinear indicator could be the amplitude of 
third harmonics [10], the energy of the SSM signal due to loss of 
proportionality [16] or the shift in the resonance frequency [13].

Here we analyze the same problem from a different perspec-
tive. We propose an approach which might allow to distinguish 
between different sources of nonlinearity, topic which has recently 
attracted a lot of attention [38,39]. Both experiments and theoreti-
cal expectations [40] show a power law dependence y = axb of the 
nonlinear indicator y from the excitation amplitude x, at least in a 
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Fig. 1. Typical source functions used in the experimental analysis and examples of 
received signals: (a) and (c) sinusoidal excitations; (b) and (d) pulse excitation. The 
dashed rectangles highlight the portion of the detected signals used for the data 
analysis.

given range of amplitudes [41]. In general, the term amplitude de-
notes either the energy of the excitation or the maximum strain, 
depending on experiments. Note that, for dimensional reasons, we 
introduce an adimensional y indicator, thus the trivial linear be-
havior is described by b = 0.

After a discussion about the definition of the nonlinear indica-
tor and the experimental details (Section 2), in Section 3, focusing 
on specific experiments, we will show how different features in 
the material microstructure correspond to different values of the 
exponent b. Finally, a general theoretical framework for the inter-
pretation of the observed phenomenology will be given and exam-
ples of application using an approach based on clapping [42] and 
hysteretic [43,44,24] models of elastic nonlinearity will be given.

2. Experimental configurations and data analysis

2.1. Set-up for ultrasonic measurements

In all experiments described in this paper, the following exper-
imental set-up has been designed. The sample was equipped with 
two narrow band longitudinal PZT transducers with working fre-
quency of 55.5 kHz, acting as emitter and receiver. Transducers 
were glued using phenyl-salycilate as a coupling agent.

The source transducer was connected to an arbitrary waveform 
generator coupled with a linear amplifier (20×). The source func-
tion is us(t) = Au(t) In some cases continuous waves (cws) have 
been used in the form of sinusoidal waves with frequency ω =
55.5 kHz corresponding to the transducer resonance (see Fig. 1a). 
When pulses were better suited for the analysis, bursts composed 
of a few sinusoidal cycles at 55.5 kHz were generated (see Fig. 1b).

For data acquisition, the receiving transducer was connected to 
an oscilloscope, working with a sampling rate of 10 MSa/s. The 
generated signal was also recorded to allow perfect synchroniza-
tion of signals at successive amplitudes of excitation. To increase 
the signal to noise ratio, detected signals were averaged over sev-
eral acquisitions. Although a long signal was recorded, for the anal-
ysis only a smaller portion was used: a few cycles once standing 
wave conditions were reached (in the cases of cw) or a short time 
signal after the first arrival (in the case of pulses). Typical examples 

of recorded signals are reported in Figs. 1c and 1d, for sinusoidal 
and pulses excitations, respectively. The portion of the signal used 
in the analysis is highlighted.

Linearity of the transducers, coupling and acquisition system 
was carefully checked before each experiment in the chosen am-
plitude and frequency ranges. Albeit results are not reported here, 
a linear sample (aluminum) was always tested showing no non-
linear features (a negligible and b ≈ 0). Environmental conditions 
were not controlled in the experiments, nevertheless we have 
proved elsewhere that effects due to environmental fluctuations in 
temperature and humidity are not affecting significantly the results 
[45].

2.2. The scaling subtraction method

In each of the experiments a set of signals vi(t) was recorded 
changing the amplitude of the excitation Ai (i = 0 . . . N). The typ-
ical values for N are ranging between N = 10 and N = 20, with 
amplitudes spanning an interval of 15 to 40 dB, i.e. the ratio be-
tween the smallest (reference) and largest amplitudes ranges be-
tween 7 and 100. The nonlinear indicator was extracted using the 
Scaling Subtraction Method – SSM [16,17].

The SSM takes advantage of the loss of proportionality between 
response and excitation when the sample is nonlinear elastic. Con-
sidering the smallest amplitude of excitation A0, we can assume 
the response v0(t) to be roughly linear, since the energy was not 
sufficient to excite the nonlinearity of the material. In practice, the 
smallest amplitude is chosen as that of the lowest excitation pro-
viding a signal emerging from noise level. Thus, if the material 
were linear, we could expect, for an excitation of amplitude Ai , 
a response

vref (t) = Ai/A0 v0(t) (1)

This signal is called the reference signal at the ith excitation am-
plitude.

Of course, being the sample nonlinear the response vi(t)
recorded in the experiment is different. Thus, the nonlinear sig-
nature of the sample is completely contained in the SSM signal

wi(t) = vi(t) − vref (t) (2)

The nonlinear indicator could then be used as the “energy” of the 
SSM signal:

ySSM
i = 1/T

T∫
0

wi(t)
2dt/xi (3)

where T is a proper time window, as discussed in previous works, 
and

xi = 1/T

T∫
0

vi(t)
2dt (4)

is the energy of the excitation. Note that the nonlinear indicator 
is adimensional. Finally, the SSM indicator ySSM is plotted vs. the 
excitation energy x.

Typical examples of the signals used for the analysis are re-
ported in Fig. 2. The difference between the recorded and the 
reference signals is evident, with a good signal to noise ratio of 
the SSM signal.

2.3. Power laws

In our context, it is important to underline that often the SSM 
indicator depends on the energy according to a power law function 
(see Appendix A for further considerations):
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