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We obtain second and higher order corrections to the shift of the Bose–Einstein critical temperature due 
to finite-size effects. The confinement is that of a harmonic trap with general anisotropy. Numerical work 
shows the high accuracy of our expressions. We draw attention to a subtlety involved in the consideration 
of experimental values of the critical temperature in connection with analytical expressions for the finite-
size corrections.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the first realizations of Bose–Einstein condensation (BEC) in 
the laboratory [1–3] and in many experiments ever since, the Bose 
gas is trapped in a potential that can be considered as parabolic to 
a very good approximation. In the thermodynamic limit, within the 
ideal gas approximation, the critical temperature for such a system 
is given by kB T0 = (N/ζ(3))1/3h̄ω̃, where ω̃ = (ωxωyωz)

1/3 is the 
geometric mean of the trap frequencies and all the other symbols 
have their usual meaning (see e.g. [4]). Soon after the first experi-
ments, corrections to this expression, �Tc ≡ Tc − T0, were found. 
On the one hand, experiments do not take place in the thermo-
dynamic limit. Hence, finite-size corrections are required. On the 
other hand, the gases are not ideal, having a non-vanishing scatter-
ing length. Hence, interaction effects must be taken into account.

The first order shift �Tc due to interactions was determined 
analytically early on in [5] within a mean-field approximation, 
in the form of a linear term in the scattering length. Higher or-
der corrections followed in several works [6–16], both numerical 
and analytical. Expansions for �Tc in powers of the scattering 
length down to second order were determined, both within a 
mean-field approach [9,17,12,15,16] and accounting for critical cor-
relations [7].

The first order finite-size induced shift was given in the 
isotropic case in [18,19] and in the general anisotropic case in 
[20] as

�Tc = − ζ(2)

2ζ(3)

h̄ω̄

kB
, (1)
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where ω̄ = (ωx + ωy + ωz)/3. More recently, a higher order result 
was given in [21] (see also [22,23]). This result relies on the lo-
cal density approximation, in which the discrete energy levels of 
the finite system are approximated by a continuum, therefore re-
quiring that the typical thermal energy at the transition be much 
greater than the typical inter-level spacing (for example, in the 
case of an isotropic harmonic trap, kB Tc � h̄ω), i.e., the thermo-
dynamic limit. Moreover, in order to overcome the vagueness (or 
non-point-like character) associated with the critical temperature 
of the finite system, we believe it would be useful to consider an 
explicit physical criterion for this critical temperature, related for 
example to the condensate fraction or the specific heat, when go-
ing to the level of detail of higher-order corrections [22].

Strictly speaking, a finite-size correction to T0 is an ill-defined 
concept when taken on its own because the effect of finite size 
is to spread out the phase transition from a point to a narrow 
temperature interval. The first order correction (1) is typically ex-
tracted from a high temperature finite-size expansion of the num-
ber of particles, which takes into due account the discreteness of 
the energy levels and which can be obtained in several ways [20,
24–26]. If one attempts to find a second order correction from 
this expansion, the absence of a true critical temperature makes 
itself noticed: the next order term in the expansion is divergent 
at the critical point, ultimately implying the non-existence of BEC 
as a sharp, mathematically defined phase transition in finite sys-
tems. It follows that the first order corrected Tc must not be taken 
too seriously. It merely provides a reference value for signaling the 
transition.

In experimental work where the BEC critical temperature is 
measured [27–30], the expression generally quoted for purposes 
of comparison with theory, namely for splitting off finite-size ef-
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fects from interaction effects, is the one in (1). Now, as mentioned 
above, this expression should not be taken at face value. Thus, 
there is the possibility that a misinterpretation of the finite-size 
related shift can lead to a bias in the reported values of the inter-
action induced shift. It would be of interest to make this matter 
clearer. What is actually measured in experiments is the number 
of particles, ground state fraction, trap frequencies and tempera-
ture. It is by performing some polynomial fit to a plot involving 
these quantities that an experimental value for Tc is usually ex-
tracted [27–29]. In the landmark experiment reported in [28] the 
fit is performed in the region where the condensate fraction “no-
ticeably starts to increase”. Condensate fractions as low as about 
1% could be measured in this experiment. If lower condensate frac-
tions could be measured, higher critical temperatures would have 
been obtained, even rising above T0 for sufficiently small conden-
sate fractions. This is because for finite systems the condensate 
fraction is not zero for temperatures above the critical region. It is 
just very small. This fact becomes more conspicuous for low par-
ticle numbers. Another major experiment in what concerns high 
precision measurements of Tc is reported in [29]. Here, very much 
the same comments apply. In this case, condensate fractions as low 
as 0.1% could be detected. The authors overcome the problem of 
isolating interaction from finite-size corrections by performing dif-
ferential measurements with reference to a standard value of the 
scattering length. Nevertheless, as recently pointed out [12], this 
assumes that finite size and interaction effects are independent. At 
second order, it might not be the case.

Our aim in the present work is to obtain higher-order finite-size 
corrections to the critical temperature of a Bose gas in a general 
harmonic trap. To do this in a meaningful way, which at the same 
time can connect to experimental procedures, we overcome the 
non-existence of a true critical temperature by asking instead for 
the temperature Tκ at which the condensate fraction has a given 
small value Ngr/N = κ , κ � 1. Other criteria could be used, like 
defining Tc by the maximum of the specific heat or the inflection 
point of the Ngr(T ) curve; but the one we adopt here is proba-
bly the most useful because it uses the condensate fraction and it 
is very simple. From the well known bulk behaviour of the con-
densate fraction in the BEC regime, Ngr/N = 1 − (T /T0)

3, we have 
in the thermodynamic limit Tκ/T0 = (1 − κ)1/3. For κ → 0, this 
yields Tκ → T0. We will provide finite-size corrections to Tκ down 
to third order. Stopping at second order is not accurate enough 
in some circumstances, as detailed below. Our approach preserves 
all the finite-size characteristics of the system, with no approxi-
mations involved. The information on the discrete structure of the 
energy levels is carried in the expansions (4) and (5) below. Finally, 
we note that our expressions are also valid (and highly accurate) 
for κ not small, i.e., deep into the BEC regime.

2. Finite-size corrections

Let x = βh̄ω̄ = h̄ω̄/(kB T ) and ε = (Egr −μ)/(h̄ω̄). x is a rescaled 
inverse temperature and ε can be looked at as a rescaled chemi-
cal potential. We define the anisotropy vector λ = (λ1, λ2, λ3) =
(ω1, ω2, ω3)/ω̄. Using grand-canonical statistics, the number of 
particles N of an ideal Bose gas in this trap is given by

N =
∑

n

[
eβ(En−μ) − 1

]−1 =
∑

n

∞∑
k=1

e−kx(λ·n+ε) . (2)

The sum in n is over all single particle states, of energy En =∑3
i=1 (ni + 1/2) h̄ωi , ni = 0, 1, 2, . . .. Let λ = (λ1λ2λ3)

1/3. The usual 
bulk result for N , which is exact in the thermodynamic limit, 
reads in our variable x3N = Li3(e−xε)λ−3 if T ≥ T0 and x3N =
x3Ngr + ζ(3)λ−3 if T < T0 (where x3N is the quantity that remains 
finite in the thermodynamic limit, as opposed to N). Li3 is the 

polylogarithm of index 3, with the property Li3(1) = ζ(3). Define 
x0 = h̄ω̄/(kB T0) = (ζ(3)/N)1/3λ−1. As we approach the thermody-
namic limit in the usual way (Nω3

i kept fixed) we have x0 → 0, or 
for any fixed temperature, x → 0. x and eventually x0 will be our 
expansion parameters. In the BEC regime, we have in addition (still 
in the thermodynamic limit) Ngr = 1/(εx), from where we see that 
ε scales as x2.

What we need is an expansion for N that contains the finite-
size corrections and that is valid throughout the critical region. 
This can be achieved by applying a Mellin–Barnes transform to the 
exponential inside the k summation in (2), as indeed was done 
before in [31]. The same procedure was also applied to a Bose gas 
subject to other confinements [32,33]. An expansion is obtained by 
solving a contour integral in the complex plane using the theo-
rem of residues. In this case, the Riemann and three-dimensional 
Barnes zeta functions, here denoted ζ(α) and ζB(α, ε|λ) respec-
tively, make their appearance. Knowledge of the residues at the 
poles of these functions is required. We refer the reader to [31]
for details of the procedure. ζB is a multi-dimensional general-
ization of the Hurwitz zeta function, which was studied in depth 
by Barnes in [34] (see also [35]). In [31] the expansion for N
was calculated to subleading order. However, for our purposes 
we need also the third and fourth terms. The calculation of the 
third term, in particular, is more involved due to the existence 
of a double pole, requiring the knowledge of the finite part at 
the α = 1 pole of ζB(α, ε|λ), not only its residue. Specifically, be-
low we need the quantity b0(λ) defined in the following way. Let 
a0(ε|λ) be the finite part at the α = 1 pole of ζB(α, ε|λ). Then 
b0 = limε→0(a0(ε|λ) − ε−1), i.e., a0(ε|λ) = ε−1 + b0 +O(ε). b0 is a 
function of λ only. We obtain the expansion

N = ζ(3)

λ3
x−3 + 3 − 2ε

2λ3
ζ(2)x−2

+
[

a0(ε|λ) − 9 + (λiλ j) − 18ε + 6ε2

12λ3
ln x

]
x−1

− 1

2
ζB(0, ε|λ) +O(x) , (3)

where we have adopted the following notational conventions: 
(λiλ j) = ∑3

i, j=1 (i< j) λiλ j = λ1λ2 + λ1λ3 + λ2λ3 and (λ2
i λ j) =∑3

i, j=1 (i �= j) λ2
i λ j . The first two terms in (3) were given in [31]. 

From [34] we have that ζB(0, ε|λ) = 1/8 + (λ2
i λ j)/(24λ3) + O(ε). 

The full asymptotic expansion for N could easily be given, but it is 
not needed.

Define the rescaled temperature t = T /T0 = x0/x. In (3), change 
from the variables N , x and ε to x0, t and ε by performing the 
substitutions N = ζ(3)/(λx0)

3 and x = x0/t . Equation (3) gives us 
ε implicitly as a function of x0 and t . Since ε = O(x2

0) for t < 1, 
we solve for ε perturbatively by letting ε = a(t)x2

0 + b(t)x3
0 +

c′(t)x4
0 ln x0 + c(t)x4

0 + · · · and find the coefficients a(t), b(t) . . . . 
Next we use the expression for the condensate fraction Ngr/N =
(eεx − 1)−1/N . In this expression, we change again to the variables 
x0, t and ε and substitute the newly found expansion for ε . Ex-
panding the resulting expression in powers of x0 yields

Ngr

N
=

(
1 − t3

)
− 3ζ(2)

2ζ(3)
t2x0

− λ3t

ζ(3)

[
b0 + 9 + (λiλ j)

12λ3
(ln t − ln x0)

]
x2

0

+ λ3

ζ(3)

[
ζ(2)

ζ(3)

t3

1 − t3
+ (λ2

i λ j)

48λ3
− 7

16

]
x3

0 + · · · . (4)

This equation gives us the condensate fraction as a function of t
and N (or t and x0). It is valid throughout the BEC regime and 
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