Physics Letters A 379 (2015) 3050-3053

Contents lists available at ScienceDirect

PHYSICS LETTERS A

Physics Letters A

www.elsevier.com/locate/pla

Realization of a holonomic quantum computer in a chain
of three-level systems

@ CrossMark

Zeynep Nilhan Giirkan®°, Erik Sjoqvist 9

a Department of Industrial Engineering, Gediz University, Seyrek, 35665 Menemen, Izmir, Turkey

b Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore
¢ Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden

d Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden

ARTICLE INFO ABSTRACT

Article history:

Received 4 September 2015

Received in revised form 8 October 2015
Accepted 13 October 2015

Available online 23 October 2015

Holonomic quantum computation is the idea to use non-Abelian geometric phases to implement
universal quantum gates that are robust to fluctuations in control parameters. Here, we propose a
compact design for a holonomic quantum computer based on coupled three-level systems. The scheme
does not require adiabatic evolution and can be implemented in arrays of atoms or ions trapped in
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1. Introduction

Holonomic quantum computation (HQC), first proposed by Za-
nardi and Rasetti [1], is the idea to use non-Abelian geometric
phases to implement quantum gates. In the case of adiabatic evo-
lution, this approach allows for universal quantum computation by
composing holonomic gates associated with a generic pair of loops
in the space of slow control parameters. Adiabatic holonomic gates
are insensitive to random fluctuations in the parameters and there-
fore potentially useful for robust quantum computation [2]. Physi-
cal realizations of adiabatic HQC have been developed in quantum
optics [3], trapped ions [4,5] or atoms [6], quantum dots [7,8], su-
perconducting qubits [9-11], and spin chain systems [12-14].

Universal HQC has been demonstrated [15] by using non-
adiabatic non-Abelian geometric phases [16]. Conceptually, a non-
adiabatic holonomy depends on a loop traced out by a subspace of
the full Hilbert space, rather than a loop in some control parameter
space. An explicit scheme for non-adiabatic HQC, encoding qubits
in the two bare ground state levels of A-type systems, has been
developed in Ref. [15]. This scheme was subsequently realized for
a transmon qubit [17], in a nuclear magnetic resonance setup [18],
and in a nitrogen-vacancy color center in diamond [19,20]. Fur-
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thermore, the idea of non-adiabatic HQC has been combined with
other methods to achieve resilience to collective errors [21-25]
and has been demonstrated for other level structures [26,27].

Here, we demonstrate non-adiabatic universal HQC in a linear
chain of interacting three-level systems. The resources scale lin-
early with the number of logical qubits and can therefore be used
to build a compact holonomic quantum computer with a small
overhead of auxiliary systems. Our setup can in principle be im-
plemented for three-level atoms or ions trapped in standing wave
potentials.

The outline of the paper is as follows. In the next section,
the general idea of non-adiabatic holonomic quantum computa-
tion is described. The model system is introduced in Section 3. We
demonstrate a universal set of one- and two-qubit holonomic gates
in Section 4. While the one-qubit gates in this set are identical
to those developed in Ref. [15], the two-qubit gates differ as they
are mediated by ancillary systems sandwiched between the logical
qubits, rather than by utilizing direct coupling of A systems. The
paper ends with the conclusions.

2. Non-adiabatic holonomic quantum computation

Let a computational system be encoded in a subspace S of
some Hilbert space H. A cyclic evolution of S implements a quan-
tum gate. This gate generally contains a dynamical and a geometric
contribution that combine into a unitary transformation acting on
S. The dynamical part is essentially given by the Hamiltonian
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H(t) projected onto the evolving computational subspace. The
geometric part probe the underlying geometry of the space of
subspaces; technically this space is a Grassmannian manifold
G(dimH; dimS) = G(N; K) [28].

Non-adiabatic HQC on & is realized when P(t)H(t)P(t) =
€(t)P(t), where €(t) is the average energy of the subspace at
time t and iP(t) = [H(t), P(t)] with P(0) the projection opera-
tor onto S (we put fi =1 from now on). For a cyclic evolution,
i.e.,, P(t) = P(0), the time evolution operator projected onto S be-
comes unitary, and we find
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where Ag, =i (gq(t)|dey(t)) is the matrix-valued connection one-
form with {|¢g(t))} any orthonormal basis along the loop C in
G(N; K) such that |¢q(7)) = |£4(0)). Here,
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is the holonomic gate associated with C. The dynamical phase re-
duces to an unimportant overall U(1) phase factor e~ilo €t

Note that while the holonomy is induced by slow changes of
physical control parameters in adiabatic HQC, these parameters
play a passive role in the non-adiabatic version. In particular, this
means that the non-adiabatic scheme is not restricted to slow evo-
lution and can therefore be made less exposed to decoherence
effects by decreasing the run time of the gates [29].

3. Spin chain model

Consider a linear chain of 2N — 1 three-level systems with con-
trollable pair-wise nearest-neighbor isotropic XY-type interactions
and local A configurations driven by a pair of zero-detuned ex-

ternal fields (see upper panel of Fig. 1). The system evolution is
governed by the Hamiltonian
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where H,ﬁ”, H( Kks1 are time independent during each pulse and

the corresponding pulse and coupling envelopes fi(t), 8k k+1(t) are
real-valued. The relevant Gell-Mann operators associated with site
k read
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Fig. 1. Chain of three-level systems (upper panel) and its circuit equivalent (lower
panel). The red-marked odd-numbered sites contain the logical qubits encoded in
two-dimensional subspaces spanned by |0), |1) of the internal three-level systems
spanned by |0}, |1), [e). In this way, N qubits are obtained in a system of 2N — 1
three-level systems. A holonomic one-qubit gate U,“)(C) acting on qubit | is re-
alized by applying a m pulse at site 2l — 1 of two coordinated laser fields that
drive the |0) < |e) and |1) <> |e) with relative phase ¢; and relative amplitude
—tan(f;/2). Similarly, a two-qubit gate U,(,?,),H (C") acting on qubits I’ and I' + 1 is
realized by turning on interaction between pseudo-spins 2I'—1, 2I, and 2/’ +1 only.
The relative strength of the couplings is —tan(Jy y41). The holonomies U,(”(C) and

Ul(zf,H(C’) are determined by the loops C and C’ in the Grassmannian G(3; 2). (For

interpretation of the references to color in this figure, the reader is referred to the
web version of this article.)

where |0), |1), |e) span the local state space. Each three-level sys-
tem has a qubit subspace spanned by |0), |1) with associated Pauli
operators o} = |0} (1 + 1)k (Olx, 0} = —il0)i (1| +1|1) (Ol and
akz = |0)k (Ol — 1)k (1], defining a pseudo—spin-% system. Note
that of = A,(CG) and o) = A,(J).

A logical qubit is encoded in the two-dimensional subspace
spanned by |0) and |1) of each odd-numbered three-level system.
The auxiliary even-numbered systems act as a computational re-
source for mediating two-qubit gates, as will be shown below. In
this way, N logical qubits are obtained from the 2N — 1 systems
(see lower panel of Fig. 1). The state space of the N logical qubits
HM is spanned by the 2N states

{In1)110)2 In2)3

= |nny..
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defined by setting the state of all auxiliary systems to |0).

The above Hamiltonian can be implemented in internal energy
levels of atoms trapped in a one-dimensional optical lattice and ex-
hibiting the desired XY-type interaction by adjusting the standing
wave optical potential of the lattice [30]. Another possible realiza-
tion consists of ions trapped along a line by off-resonant standing
waves. The internal states in this setting can be made to interact
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