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Holonomic quantum computation is the idea to use non-Abelian geometric phases to implement 
universal quantum gates that are robust to fluctuations in control parameters. Here, we propose a 
compact design for a holonomic quantum computer based on coupled three-level systems. The scheme 
does not require adiabatic evolution and can be implemented in arrays of atoms or ions trapped in 
tailored standing wave potentials.
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1. Introduction

Holonomic quantum computation (HQC), first proposed by Za-
nardi and Rasetti [1], is the idea to use non-Abelian geometric 
phases to implement quantum gates. In the case of adiabatic evo-
lution, this approach allows for universal quantum computation by 
composing holonomic gates associated with a generic pair of loops 
in the space of slow control parameters. Adiabatic holonomic gates 
are insensitive to random fluctuations in the parameters and there-
fore potentially useful for robust quantum computation [2]. Physi-
cal realizations of adiabatic HQC have been developed in quantum 
optics [3], trapped ions [4,5] or atoms [6], quantum dots [7,8], su-
perconducting qubits [9–11], and spin chain systems [12–14].

Universal HQC has been demonstrated [15] by using non-
adiabatic non-Abelian geometric phases [16]. Conceptually, a non-
adiabatic holonomy depends on a loop traced out by a subspace of 
the full Hilbert space, rather than a loop in some control parameter 
space. An explicit scheme for non-adiabatic HQC, encoding qubits 
in the two bare ground state levels of �-type systems, has been 
developed in Ref. [15]. This scheme was subsequently realized for 
a transmon qubit [17], in a nuclear magnetic resonance setup [18], 
and in a nitrogen-vacancy color center in diamond [19,20]. Fur-
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thermore, the idea of non-adiabatic HQC has been combined with 
other methods to achieve resilience to collective errors [21–25]
and has been demonstrated for other level structures [26,27].

Here, we demonstrate non-adiabatic universal HQC in a linear 
chain of interacting three-level systems. The resources scale lin-
early with the number of logical qubits and can therefore be used 
to build a compact holonomic quantum computer with a small 
overhead of auxiliary systems. Our setup can in principle be im-
plemented for three-level atoms or ions trapped in standing wave 
potentials.

The outline of the paper is as follows. In the next section, 
the general idea of non-adiabatic holonomic quantum computa-
tion is described. The model system is introduced in Section 3. We 
demonstrate a universal set of one- and two-qubit holonomic gates 
in Section 4. While the one-qubit gates in this set are identical 
to those developed in Ref. [15], the two-qubit gates differ as they 
are mediated by ancillary systems sandwiched between the logical 
qubits, rather than by utilizing direct coupling of � systems. The 
paper ends with the conclusions.

2. Non-adiabatic holonomic quantum computation

Let a computational system be encoded in a subspace S of 
some Hilbert space H. A cyclic evolution of S implements a quan-
tum gate. This gate generally contains a dynamical and a geometric 
contribution that combine into a unitary transformation acting on 
S . The dynamical part is essentially given by the Hamiltonian
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H(t) projected onto the evolving computational subspace. The 
geometric part probe the underlying geometry of the space of 
subspaces; technically this space is a Grassmannian manifold 
G(dimH; dimS) ≡ G(N; K ) [28].

Non-adiabatic HQC on S is realized when P (t)H(t)P (t) =
ε(t)P (t), where ε(t) is the average energy of the subspace at 
time t and i Ṗ (t) = [H(t), P (t)] with P (0) the projection opera-
tor onto S (we put h̄ = 1 from now on). For a cyclic evolution, 
i.e., P (τ ) = P (0), the time evolution operator projected onto S be-
comes unitary, and we find

P (0)U (τ ,0)P (0) = e−i
∫ τ

0 ε(t)dt
K∑

a,b=1

(
Pei

∮
C A

)
ab

|ζa(0)〉 〈ζb(0)| ,
(1)

where Aab = i 〈ζa(t)|dζb(t)〉 is the matrix-valued connection one-
form with {|ζa(t)〉} any orthonormal basis along the loop C in 
G(N; K ) such that |ζa(τ )〉 = |ζa(0)〉. Here,

U (C) ≡
K∑

a,b=1

(
Pei

∮
C A

)
ab

|ζa(0)〉 〈ζb(0)| (2)

is the holonomic gate associated with C . The dynamical phase re-
duces to an unimportant overall U (1) phase factor e−i

∫ τ
0 ε(t)dt .

Note that while the holonomy is induced by slow changes of 
physical control parameters in adiabatic HQC, these parameters 
play a passive role in the non-adiabatic version. In particular, this 
means that the non-adiabatic scheme is not restricted to slow evo-
lution and can therefore be made less exposed to decoherence 
effects by decreasing the run time of the gates [29].

3. Spin chain model

Consider a linear chain of 2N − 1 three-level systems with con-
trollable pair-wise nearest-neighbor isotropic XY-type interactions 
and local � configurations driven by a pair of zero-detuned ex-
ternal fields (see upper panel of Fig. 1). The system evolution is 
governed by the Hamiltonian

H(t) =
N∑

k=1

fk(t)

×
[

sin
θk

2

(
cosφkλ

(1)

2k−1 − sinφkλ
(2)

2k−1

)
− cos

θk

2
λ

(4)

2k−1

]

+ 1

2

N−1∑
k=1

gk,k+1(t)

[
− cos

ϑk,k+1

2

(
λ

(6)

2k−1λ
(6)

2k + λ
(7)

2k−1λ
(7)

2k

)

+ sin
ϑk,k+1

2

(
λ

(6)

2k λ
(6)

2k+1 + λ
(7)

2k λ
(7)

2k+1

)]

=
N∑

k=1

fk(t)H (1)

k +
N−1∑
k=1

gk,k+1(t)H (3)

k,k+1, (3)

where H (1)

k , H (3)

k,k+1 are time independent during each pulse and 
the corresponding pulse and coupling envelopes fk(t), gk,k+1(t) are 
real-valued. The relevant Gell-Mann operators associated with site 
k read

λ
(1)

k = |e〉k 〈0|k + |0〉k 〈e|k ,

λ
(2)

k = −i|e〉k 〈0|k + i|0〉k 〈e|k ,

λ
(4)

k = |e〉k 〈1|k + |1〉k 〈e|k ,

λ
(6)

k = |0〉k 〈1|k + |1〉k 〈0|k ,

λ
(7)

k = −i|0〉k 〈1|k + i|1〉k 〈0|k , (4)

Fig. 1. Chain of three-level systems (upper panel) and its circuit equivalent (lower 
panel). The red-marked odd-numbered sites contain the logical qubits encoded in 
two-dimensional subspaces spanned by |0〉, |1〉 of the internal three-level systems 
spanned by |0〉, |1〉, |e〉. In this way, N qubits are obtained in a system of 2N − 1
three-level systems. A holonomic one-qubit gate U (1)

l (C) acting on qubit l is re-
alized by applying a π pulse at site 2l − 1 of two coordinated laser fields that 
drive the |0〉 ↔ |e〉 and |1〉 ↔ |e〉 with relative phase φl and relative amplitude 
− tan(θl/2). Similarly, a two-qubit gate U (2)

l′,l′+1(C ′) acting on qubits l′ and l′ + 1 is 
realized by turning on interaction between pseudo-spins 2l′ −1, 2l′ , and 2l′ +1 only. 
The relative strength of the couplings is − tan(ϑl′,l′+1). The holonomies U (1)

l (C) and 
U (2)

l′,l′+1(C ′) are determined by the loops C and C ′ in the Grassmannian G(3; 2). (For 
interpretation of the references to color in this figure, the reader is referred to the 
web version of this article.)

where |0〉, |1〉, |e〉 span the local state space. Each three-level sys-
tem has a qubit subspace spanned by |0〉, |1〉 with associated Pauli 
operators σ x

k = |0〉k 〈1|k +|1〉k 〈0|k , σ y
k = −i|0〉k 〈1|k + i|1〉k 〈0|k , and 

σ z
k = |0〉k 〈0|k − |1〉k 〈1|k defining a pseudo-spin- 1

2 system. Note 
that σ x

k = λ
(6)

k and σ y
k = λ

(7)

k .
A logical qubit is encoded in the two-dimensional subspace 

spanned by |0〉 and |1〉 of each odd-numbered three-level system. 
The auxiliary even-numbered systems act as a computational re-
source for mediating two-qubit gates, as will be shown below. In 
this way, N logical qubits are obtained from the 2N − 1 systems 
(see lower panel of Fig. 1). The state space of the N logical qubits 
H(N) is spanned by the 2N states

{|n1〉1 |0〉2 |n2〉3 . . . |0〉2N−2 |nN〉2N−1

≡ |n1n2 . . .nN〉L}n1,n2,...,nN=0,1 (5)

defined by setting the state of all auxiliary systems to |0〉.
The above Hamiltonian can be implemented in internal energy 

levels of atoms trapped in a one-dimensional optical lattice and ex-
hibiting the desired XY-type interaction by adjusting the standing 
wave optical potential of the lattice [30]. Another possible realiza-
tion consists of ions trapped along a line by off-resonant standing 
waves. The internal states in this setting can be made to interact 
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