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We study the BCS–Bose Einstein Condensation (BEC) crossover of a three-dimensional spin polarized 
Fermi gas with Rashba spin–orbital coupling (SOC). At finite temperature, the effects of non-condensed 
pairs due to the thermal excitation are considered based on the G0G pair fluctuation theory. These 
fluctuations generate a pseudogap even persistent above Tc . Within this framework, the Sarma state 
or the spin polarized superfluid state and polarized pseudogap state are explored in detail. The resulting 
Tc curves show that the enhancement of pairing due to the SOC roughly cancels out the suppression 
of pairing due to the population imbalance. Thus we observed that in a large portion of the parameter 
space, the polarized superfluid state are stabilized by the SOC.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Ultracold Fermi gases with tunable interactions has been the 
focus of a lot of experimental and theoretical works. The advan-
tage of cold Fermi gases is that they are much more control-
lable than other ordinary condensed matter materials. The inter-
action between the fermions usually has very short effective range 
and can be characterized by one parameter, the s-wave scatter-
ing length a, or more conveniently, dimensionless scattering length 
1/(kF a), with the Fermi momentum kF . By applying an external 
magnetic field, one can tune the Zeeman splitting energy between 
the bound state of closed channel and the continuum threshold 
of the open channel, which will lead to the so-called Feshbach
resonance [1–3] when the above two energy levels line up. This 
phenomenon allows one to tune 1/(kF a) from very negative to a 
large positive number. Correspondingly, the interatomic interaction 
varies from a weak attraction to a very strong attraction. There-
fore, the cold Fermi gases provide an experimental realization of 
the early theoretical ideas of BCS–BEC crossover [4–7] and are also 
very useful for testing the many-body theories.

A natural interesting point in the crossover is the so-called uni-
tary limit when the scattering length diverges. The unitary limit of 
Fermi gases is intrinsically strong correlated and there is no small 
parameter to expand with. The BCS–BEC crossover theory describes 
the loosely bound Cooper pairs evolve into tightly bound bosonic 
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pairs with increasing attractive interaction strength. It captures the 
two weakly interacting limits and can also give quantitative ac-
count of the unitary limit in-between. When considering the finite 
temperature physics of the crossover, the contribution of the non-
condensed pairs becomes important due to the stronger than BCS 
attraction and these effects must be considered in a way consistent 
with the BCS ground state.

Soon after the experimental evidence of the fermionic superflu-
idity was achieved, one was able to adjust the number density of 
spin up and spin down particles. Since the singlet pairing requires
equal number of spin up and spin down particles, these spin polar-
ized Fermi gases generated a lot of possible novel phases [8], such 
as Sarma or polarized superfluid phase [9,10], polarized pseudogap 
phase, Larkin–Ovchinnikov–Fulde–Ferrell (LOFF) phase [11–13], or 
the phase separations between different phases [14,15]. The sta-
bility of these phases and the transitions between them have also 
been studied by many authors [16,17].

In recent years, another important breakthrough in experiments 
is the realization of the synthetic non-Abelian gauge field and the 
spin–orbital coupling (SOC) in cold atomic gases [18]. By applying 
two counter-propagating Raman laser beams and a transverse Zee-
man field to Boson atoms with multiple components, a synthetic 
SU(2) non-Abelian gauge field can be generated by appropriate 
choice of the laser frequency and Zeeman splitting. One can show 
that the low energy effective theory contains a Raman type of 
SOC terms [19]. Similar scheme can also be applied to the fermion 
atoms, and the SOC of Fermi gases has already been generated in 
experiments [20,21]. The SOC of Fermi gases opens up the possibil-
ities to explore many novel physics in cold atoms. It also provides 
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us yet another way to achieve the BCS–BEC crossover. As pointed 
out in [22], with Rashba type of SOC, there appears a new type 
of two-body bound state of fermion pairs even for a < 0, while 
two-body bound state does not exit in the BCS side without SOC. 
This suggests that the pairing strength between fermion pairs is
enhanced by the Rashba SOC term. Therefore, increasing the SOC 
coupling is equivalent to pushing the Fermi gases to its deep BEC 
limit, thus is another way to get BCS–BEC crossover.

There already appears a lot of theoretical works on the SOC 
Fermi gases with or without population imbalance [23]. The possi-
ble phases are very similar to the Fermi gases without SOC. The 
gapped and gapless polarized superfluid and phase separations 
have been discussed in [24,25]. The existence of LOFF state and 
related topological properties has been considered in [26,27]. How-
ever, other than a few exceptions [28], most of these works are 
based on the mean field theory which should be more appropri-
ate for the deep BCS or very low temperature cases. The reason is 
that, as we mentioned before, in the unitary limit or BEC side of 
the crossover, the attraction is strong enough to support two-body 
bound pairs. At the finite temperature, there will be substantial 
amount of non-condensed pairs which generate an energy gap in 
single particle spectrum. In contrast to the superfluid order pa-
rameter, this pseudogap does not signal symmetry breaking. Thus 
it can be persistent above Tc which leads to a non-Fermi liquid 
normal state. Different pair fluctuation theories differentiate them-
selves from each other in the detailed form of pair propagator or 
T-matrix [29–31]. In this paper, we follow the so-called G0 G pair 
fluctuation theory [32], which is partly inspired by the early work 
of Kadanoff and Martin [33]. The advantage of this theory is its 
consistency with the BCS ground state and its numerical calcula-
bility. With both SOC and spin polarization, maybe there emerge
a lot of exotic phases. To map out the whole phase diagram will 
be an enormous task. In this paper, we only consider the simplest 
Sarma state or polarized superfluid state and polarized pseudogap 
state. To avoid other possible phases, we will mostly confine our-
selves in the parameter space where the polarized superfluid state 
is stable.

This paper is organized as follows. In Section 2, we present 
the mean field theory of population imbalanced Fermi gases with 
Rashba SOC. Then we generalize the mean field theory to include 
the G0G pair fluctuation effects in Section 3. In Section 4, we 
present the numerical results and discussion bases on the previ-
ous theoretical formalism. We conclude in Section 5.

2. Mean field theory

In this section, we consider the BCS mean field theory of pop-
ulation imbalanced Fermi gases with Rashba type of SOC. We will 
see that the gap equation can be rewritten in the T-matrix form, 
according to the Thouless criterion. Through this form, it is easy 
to generalize the BCS mean field theory to include the G0G pair-
ing fluctuation effects. In this paper, we use the Green’s function 
formalism applying to the cold gases as in [34,35].

The system of two-component population imbalanced Fermi 
gases with Rashba SOC across a Feshbach resonance can be de-
scribed by the Hamiltonian:

H =
∫

d3xψ†(x)[−∇2

2m
− μ − δμσz +Hso]ψ(x)

+ g

∫
d3xψ

†
↑(x)ψ

†
↓(x)ψ↓(x)ψ↑(x), (1)

where ψ†(x) = (ψ
†
↑(x), ψ†

↓(x)) is the creation operator, μ = (μ↑ +
μ↓)/2 is the average of the chemical potentials, δμ = (μ↑ −μ↓)/2
is the chemical potential difference, Hso = −iλ(σx∂x +σy∂y) is the 
Rashba SOC term, σx, σy, σz are the three Pauli matrices, g < 0

is the bare interaction strength of s-wave attractive interaction. In 
this paper, we take h̄ = kB = 1 for convenience.

It is more convenient to introduce the Nambu spinor �† =
(ψ

†
↑, ψ†

↓, ψ↑, ψ↓). Because the SOC interaction term explicitly de-
pends on the spin indices, the Nambu spinor has 4 components, 
mean field Hamiltonian and Green’s functions in Nambu space are 
4 by 4 matrices. Then the imaginary-time Green’s function can be 
written as:

G(τ ,x) = −〈Tτ �(τ ,x)�†(0,0)〉
=

[
G(τ ,x) F (τ ,x)

F̃ (τ ,x) G̃(τ ,x)

]
, (2)

where Tτ is the time order operator. After Fourier transformation, 
we find the Green’s function in frequency–momentum space:

G(K ) =
[

G(K ) F (K )

F̃ (K ) G̃(K )

]
. (3)

Here K = (iωn, k), ωn = (2n + 1)π T is the Matsubara frequency 
for fermion. And its matrix elements also satisfy the following re-
lations

G̃(K ) = −G(−K )T (4)

F̃ (K ) = −F (−K )T (5)

Next we will derive the gap equation, number density equa-
tion, number density difference equation based on the mean field 
approximation �sc = g〈ψ↓(τ , x)ψ↑(τ , x)〉. In this paper, we only 
consider the pairing in the spin singlet channel. For convenience, 
we take �sc to be real, i.e. �∗

sc = �sc .
By rewriting the Hamiltonian Eq. (1) in the Nambu space and 

making the mean field approximation to the two-body interac-
tion [34], we find that the inverse BCS propagator in frequency–
momentum space can be expressed as

G−1(K ) =
[

G−1
0 (K ) −i�scσy

i�scσy G̃−1
0 (K )

]
, (6)

where

G−1
0 (K ) = iωn − (ξk − δμσz) − λ(kxσx + kyσy),

G̃−1
0 (K ) = iωn + (ξk − δμσz) − λ(kxσx − kyσy),

with ξk = k2/2m − μ.
A simple matrix inversion gives the following full BCS Green’s 

function in Nambu space

G(K ) =
[

G(K ) F (K )

F̃ (K ) G̃(K )

]
, (7)

where G(K ) and F (K ) are 2 by 2 matrices with the following ma-
trix elements

G11 =
∑
γ ,α

{
αγ [ξkη

2
k − δμ(�2

sc + ξ2
k ) − γ δμξk Eα

k ]

+ ρk Eα
k + γρk(ξk − δμ)

} 1

4ρk Eα
k (iωn − γ Eα

k )
,

G12 =
∑
γ ,α

γ λ(kx − iky)(αξ2
k + αγ ξk Eα

k + ρk)

4ρk Eα
k (iωn − γ Eα

k )
,

G21 =
∑
γ ,α

γ λ(kx + iky)(αξ2
k + αγ ξk Eα

k + ρk)

4ρk Eα
k (iωn − γ Eα

k )
,

G22 =
∑
γ ,α

{
αγ [ξkη

2
k + δμ(�2

sc + ξ2
k ) + γ δμξk Eα

k ]

+ ρk Eα
k + γρk(ξk + δμ)

} 1

4ρk Eα
k (iωn − γ Eα

k )
,
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