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It is shown that the Reynolds equations for a turbulent flow over an unbounded flat surface in 
the presence of a constant pressure-gradient lead to a displaced logarithmic profile of the velocity 
distribution; the displaced logarithmic profile is obtained by assuming a constant production rate 
of turbulence energy. The displacement height measured on the (vertical) axis perpendicular to the 
surface is either positive or negative. For a positive displacement height the boundary layer exhibits 
an inversion, while for a negative displacement height the boundary layer is a direct one. In an inversion 
boundary layer the logarithmic velocity profile is disrupted into two distinct branches separated by a 
logarithmic singularity. The viscosity transforms this logarithmic singularity into a sharp edge, governed 
by a generalized Reynolds number. The associated temperature distribution is calculated, and the results 
are discussed in relation to meteorological boundary-layer jets and stratified layers. The effects of 
gravitation and atmospheric thermal or fluid-mixture concentration gradients (“external forcings”) are 
also considered; it is shown that such circumstances may lead to various modifications of the boundary 
layers. A brief presentation of a similar situation is described for a circular pipe.

© 2015 Elsevier B.V. All rights reserved.

Usually, the velocity logarithmic profile in the boundary layer of 
a turbulent flow over an unbounded flat surface is derived by using 
dimensional or similarity arguments [1,2]. We examine here the 
implications of the Reynolds equations for the turbulent bound-
ary layer in the presence of a pressure gradient. It is shown that 
a constant pressure-gradient leads to a linear dependence of the 
Reynolds shear stress on the distance from the surface; such a de-
pendence, combined with the assumption of a constant production 
rate of turbulence energy, yields a displaced logarithmic profile of 
velocity. The displacement height, measured along the (vertical) 
axis perpendicular to the surface, is either positive or negative, cor-
responding to an inversion or a direct boundary layer, respectively. 
The difference between the two types of boundary layers arises 
from the boundary conditions. In the inversion layer the fluid flows 
in the direction opposite to the main flow, and the logarithmic law 
of the velocity profile is splitted into two branches separated by 
a logarithmic singularity. The viscosity transforms this singularity 
into a sharp edge, governed by a generalized Reynolds number. 
The temperature distribution associated with such boundary layers 
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is calculated, and the results are discussed in connection with the 
meteorological boundary-layer jets and stratified layers. Gravitation 
and atmospheric thermal or fluid-mixture concentration gradients 
(“external forcings”) are also considered; it is shown that such 
circumstances may lead to various modifications of the boundary 
layers. A similar situation is presented for a circular pipe.

Specifically, we are interested in a turbulent flow of an incom-
pressible fluid along an infinite plane surface. The coordinates x
and y lie on the surface and the coordinate z is perpendicular to 
the surface (vertical coordinate). The velocity components (u, v, w)

correspond to the (x, y, z)-directions. The fluid flows along the x
axis with velocity u. As usually, we introduce the mean veloci-
ties u, v and w and the fluctuating velocities u′ , v ′ and w ′ , by 
u → u + u′ , etc. (we consider time averaging; also, spatial averag-
ing will be discussed below). We assume v = w = 0 and u(z) �= 0
depending only on z (a uniform flow along the x-direction). Under 
these conditions the Navier–Stokes equations lead to the Reynolds 
equations [1,3,4]

0 = − 1
ρ

∂ p
∂x − ∂

∂x u′ 2 − ∂
∂ y u′v ′ − ∂

∂z u′w ′ + ν ∂2u
∂z2 ,

0 = − ∂
∂x u′v ′ − ∂

∂ y v ′ 2 − ∂
∂z v ′w ′ ,

0 = − ∂
∂x u′w ′ − ∂

∂ y v ′w ′ − ∂
∂z w ′ 2 , (1)
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where ρ is the fluid density, p is the (mean) pressure (depend-
ing only on x) and ν is the viscosity coefficient. We note the 
occurrence in equation (1) of the correlation functions u′ 2, u′v ′ , 
etc. (also called variances, like u′ 2, and covariances, like u′v ′); 
these quantities are the components of the Reynolds stress tensor 
(which, multiplied by ρ , is a momentum flux density). We assume 
a constant, negative pressure-gradient ∂ p/∂x = const < 0. We note 
that the Reynolds stress tensor generates forces which may com-
pete with the pressure-gradient force in equation (1) (and with the 
viscosity “force”); therefore, equation (1) is in fact an equilibrium 
equation (corresponding to a steady flow), as expected.

Equations (1) represent a system of three equations with seven 
unknowns: the components of the Reynolds tensor and the mean 
velocity u; it is an under-determined system of equations. We are 
interested in the first equation (1), where we assume ∂(u′v ′)/∂ y =
0, u′w ′(z) �= 0 depending only on z and ∂u′ 2/∂x = const. In gen-
eral, constant Reynolds stress components with respect to a coor-
dinate amount to a homogeneous turbulence along that axis [5–7]. 
Under these conditions, the first equation (1) reads

0 = A − d

dz
u′w ′ + ν

d2u

dz2
, (2)

where A = −(1/ρ)dp/dx − ∂u′ 2/∂x; for the sake of generality we 
keep for the moment ∂u′ 2/∂x = const in equation (2), correspond-
ing to an inhomogeneous turbulence along the x-axis.

We leave aside for the moment the viscosity term in equa-
tion (2); then, the integration of this equation gives

u′w ′ = Az − βu2∗ , (3)

where β = ±1 and the parameter u∗ is a surface friction velocity; 
for the sake of generality we keep both signs in the boundary con-
dition u′w ′ |z=0= −βu2∗; ρu2∗ is the friction force per unit area of 
the surface and ρu′w ′ is the xz-component of the momentum flux 
density (Reynolds shear stress). Equation (3) can also be written as

u′w ′ = βu2∗
h

(z − h) , h = βu2∗
A

, A �= 0. (4)

Such a linear dependence of the shear stress is known in the at-
mospheric turbulence of the boundary layers [8] and in turbulent 
flow on flat plates or in channels [1]. We note that the displace-
ment height h may have both signs.

Multiplying the Navier–Stokes equations by u and using the 
same procedure (u → u + u′ , etc.), we get the conservation law 
for the mean-flow energy

0 = ∂

∂t

[
1

2
u2

]
=

= u

[
− 1

ρ

∂ p

∂x
− ∂

∂x
u′ 2 − ∂

∂ y
u′v ′ − ∂

∂z
u′w ′ + ν

∂2u

∂z2

]
, (5)

which is the first equation (1) multiplied by u. Similarly, multiply-
ing the Navier–Stokes equations by the fluctuating velocities and 
taking the average we get the conservation equation for the turbu-
lence energy

0 = ∂
∂t

[
1
2 (u′ 2 + v ′ 2 + w ′ 2)

]
=

= −u′w ′ ∂u
∂z − 1

2 u ∂
∂x

(
u′ 2 + v ′ 2 + w ′ 2

)
+

+ ν
(

u′�u′ + v ′�v ′ + w ′�w ′
)

, (6)

where third-order terms involving products of three fluctuating ve-
locities and velocity derivatives, as well as the contribution of the 

fluctuating part of the pressure have been dropped out; in ad-
dition, in deriving equation (6) the continuity equation ∂u′/∂x +
∂v ′/∂ y + ∂ w ′/∂z = 0 has been used. The main assumption made 
here is that the fluctuations are small in comparison with the 
mean flow. Adding the two equations (5) and (6), we get the con-
servation law of the total energy

0 = ∂
∂t

[
1
2 (u2 + v2 + w2)

]
=

= − 1
ρ

∂ p
∂x u − ∂

∂x

(
uu′ 2

)
− ∂

∂ y

(
uu′v ′

)
−

− ∂
∂z

(
uu′w ′

)
− ∂

∂x

[
1
2 u

(
u′ 2 + v ′ 2 + w ′ 2

)]
+

+ ν
(

u ∂2u
∂z2 + u′�u′ + v ′�v ′ + w ′�w ′

)
. (7)

The first term on the right in equation (7) is related to the work 
done by the pressure forces per unit time; the next four terms are 
related to the energy flux density due to the fluid mass transfer; 
the last term, involving the viscosity coefficient, can be written as

ν
(

u ∂2u
∂z2 + u′�u′ + v ′�v ′ + w ′�w ′

)
=

= ν ∂2

∂z2

(
1
2 u2

)
+ 1

2ν�
(

u′ 2 + v ′ 2 + w ′ 2
)

−

− ν
(

∂u
∂z

)2 − ν

[(
∂u′
∂x

)2 +
(

∂u′
∂ y

)2 +
(

∂u′
∂z

)2
]

−

− ν

[(
∂v ′
∂x

)2 +
(

∂v ′
∂ y

)2 +
(

∂v ′
∂z

)2
]

−

− ν

[(
∂ w ′
∂x

)2 +
(

∂ w ′
∂ y

)2 +
(

∂ w ′
∂z

)2
]

; (8)

the first two terms on the right in equation (8) are related to 
the energy flux density due to internal friction (momentum trans-
fer through collisions caused by viscosity); the remaining terms 
imply heat production; for an adiabatic flow they are equal to 
−(1/ρ) div q, where q is the heat flux density [2].

A similar analysis can be done for each of the equations (5) and 
(6) separately. The terms −u ∂

∂z u′w ′ on the right in equation (5)

and −u′w ′ ∂u
∂z in equation (6) (which together give an energy flux 

density − ∂
∂z

(
uu′w ′

)
), have a special meaning when taken sep-

arately: each of them represents a coupling between the mean 
flow and the turbulent flow. In particular, −u′w ′ ∂u

∂z is a production 
rate of turbulence energy (while −u ∂

∂z u′w ′ is a production rate of 
mean-flow energy; “production” means here either a positive or a 
negative contribution).

We focus now on equation (6). The components of the Reynolds 
stress tensor have a small, local (finite) variation, at least for a ho-
mogeneous turbulence; assuming a homogeneous turbulence along 
the x, y-coordinates and taking a spatial averaging with respect to 
these coordinates we get from equation (6)

u′w ′ du
dz = ν

(
u′ d2

dz2 u′ + v ′ d2

dz2 v ′ + w ′ d2

dz2 w ′
)

− νC =

= 1
2ν d2

dz2

(
u′ 2 + v ′ 2 + w ′ 2

)
−

− ν

[(
du′
dz

)2 +
(

dv ′
dz

)2 +
(

dw ′
dz

)2
]

− νC , (9)

where C is a positive constant arising from spatial averages of 
the type u′ ∂2

∂x2 u′ (for the sake of simplicity, in equation (9) the 
spatial averaging is not indicated explicitly by an additional aver-
aging sign). The first term on the right in equation (9) involves 
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