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We propose a method to factor numbers using a single particle caught in a separable two-dimensional 
potential with a logarithmic energy spectrum. The particle initially prepared in the ground state is excited 
with high probability by a sinusoidally time-dependent perturbation into a state whose two quantum 
numbers represent the factors of a number encoded in the frequency of the perturbation. We discuss the 
limitations of our method arising from off-resonant transitions and from decoherence.
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1. Introduction

The logarithms introduced by John Napier (1550–1617) were 
used extensively to facilitate tedious calculations.

Even in the last century the slide-rule with its logarithmic scale 
was an indispensable tool for any physicist but got eventually re-
placed by the electronic pocket calculator. In this Letter we employ 
logarithms to find the prime factors p and q of a given number 
N = p × q using the quantum dynamics of a single atom moving 
in a two-dimensional potential.

This potential is designed as to obtain a logarithmic energy 
spectrum in the two vibrational motions. An excitation with an 
energy determined by the number to be factored provides us by a 
measurement of one of the energies of the two motions with the 
factors. We propose an excitation mechanism which leads us ex-
clusively to the states that contain the factors, that is to the factor 
states. Moreover, we discuss the limitations of our method.

The problem of factorization is crucial to the security of com-
munication and Peter Shor’s celebrated quantum algorithm [1] has 
triggered interest in alternative methods [2–5]. In a recent article 
[2] we have proposed a factorization scheme based on two inter-
acting atoms in a one-dimensional trap with a logarithmic energy 
spectrum. The present Letter is different in three major aspects: 
(i) We replace the two atoms moving in one space dimension by 
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a single particle in two dimensions, (ii) we propose an excitation 
mechanism which is easier to realize experimentally, and (iii) we 
consider an energy spectrum which contains a scaling parameter 
and allows us to eliminate in the outcome of the measurement 
trivial factors such as unity and the number to be factored.

Our Letter is organized as follows: In Section 2 we introduce 
the logarithmic spectrum together with the addition formula of 
the energies which is at the heart of our factorization scheme. 
We dedicate Section 3 to the realization of such an energy spec-
trum by the motion of a quantum particle in an appropriate 
two-dimensional potential and summarize our factorization pro-
tocol based on the measurement of the energy of one of the 
motions. Sections 4 and 5 discuss the dynamics governed by the 
Schrödinger equation. In particular, we show that the system of 
differential equations for the probability amplitudes to be in the 
energy eigenstates reduces to a two-level problem involving the 
ground state and the factor state only. Since our factorization 
scheme is based on Rabi oscillations we estimate the interac-
tion time in Section 6 and analyze the influence of perturbations 
such as off-resonance transitions and decoherence in Section 7. We 
summarize our results in Section 8 and provide a brief outlook.

2. Addition theorem of energies and factorization

Energy spectra composed of logarithms of either natural num-
bers or of prime numbers have been studied in [2,6–8]. Our factor-
ization scheme is based on a logarithmic energy spectrum of the 
type
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E�(L) ≡ h̄ω0 ln

(
1

L
� + 1

)
, (1)

where the choice of the quantum numbers � = 0, 1, 2, . . . implies 
a vanishing ground state energy E0(L). Moreover, we have intro-
duced the unit of energy h̄ω0. The argument L indicates the de-
pendence of the spectrum on the constant L which plays the role 
of a scaling parameter.

We first consider the following two problems: (i) How can a 
nonvanishing energy

E(m · n; L) ≡ h̄ω0 ln
(m · n

L2

)
(2)

determined by the product of the two integers m and n be dis-
tributed onto two energies of the spectrum (1), and (ii) under 
which condition is this energy decomposition unique?

The answer to the first question emerges by writing the energy 
(2) as

E(m · n; L) = Em−L(L) + En−L(L) (3)

and comparing it with (1). This addition theorem shows (i) that 
the scaling parameter L has to be integer, and (ii) that m and n
must obey m, n ≥ L and m · n > L2.

We now address the second question. The fundamental theo-
rem of arithmetics [9] guarantees that the factors m and n of the 
product m ·n are unique if they are prime. Therefore, at first glance 
it appears sufficient that the integers m, n are chosen prime. But 
there is one more possibility of distributing the energy E(m · n; L). 
Indeed, the relation

E(m · n; L) = E0(L) + Ek(L) (4)

with E0(L) = 0 and positive integer k ≡ m · n/L − L is valid only 
if the scaling parameter L is a factor of m · n. This possibility is 
always present for L = 1 and has been discussed already in [2,6]. 
Therefore, throughout our Letter we consider the case L ≥ 2.

To summarize, the distribution of the energy E(m · n; L) can 
take place if m, n ≥ L with m · n > L2, and it is unique if (i) m, 
n are prime and (ii) L is not a factor of m · n. These results are 
demonstrated in Fig. 1 for the scaling parameter L = 2 and m = 3
and n = 5 and have important consequences for our factorization 
scheme.

Let the two energies Em−L(L) and En−L(L) in the addition the-
orem (3) correspond to the energies of the two degrees of freedom 
of a particle moving in two dimensions. When we excite the parti-
cle from the ground state into a state with total energy E(m · n; L)

and provided L is not a factor of m · n we only find the individual 
energies Em−L(L) and En−L(L). However, if one of the quantum 
numbers m − L or n − L, or both are negative the corresponding 
energy does not occur in the spectrum (1). Hence, this excitation 
cannot take place.

This feature suggests that we can find the prime factors p and 
q (p < q) of an integer N by an iterative method that tests if a 
transition from the ground state occurs for a given L. Since in this 
case (2) and (3) read

E p−L(L) + Eq−L(L) = h̄ω0 ln

(
N

L2

)
≡ E(p · q; L) (5)

we arrive at the following algorithm: When L was chosen by acci-
dent larger than p no transition occurs and L has to be lowered. If 
still no transition occurs it has to be decreased further. If the tran-
sition occurs it must be increased. This algorithm converges after 
a number of steps given by ln N .

However, there is a problem in this scheme. A transition re-
quires a nonvanishing interaction time which is shown in Section 6
to scale with 

√
N . Fortunately after this time we find the factors 

directly by a measurement of the energy and no iteration scheme 
is necessary.

Fig. 1. Scaled one-dimensional potential V (1)(ξ ; L = 2)/h̄ω0 creating a logarithmic 
energy spectrum with scaling parameter L = 2 as a function of dimensionless coor-
dinate ξ ≡ α x with the trap-specific inverse length α ≡ (μω0/h̄)1/2. This potential 
(dotted line) is determined numerically by an iteration algorithm based on a pertur-
bation theory [8] using the Hellmann–Feynman theorem and is designed to obtain 
a logarithmic dependence of the energy eigenvalues E�(L = 2) on the quantum 
number � as given by (1). By solid lines we depict the numerically determined 
energy wave functions of the first 7 states in their dependence on the dimension-
less position. The bold dash-dotted line as well as the long arrow on the right 
represent the excitation energy E(3 · 5; L = 2) = E3−2 5−2(L = 2) = E1 3(L = 2) if 
the number 15 = 3 × 5 is to be factored, as is expressed by (3) and (9). The two 
shorter arrows indicate the one-dimensional energies E3−2(L = 2) = E1(L = 2) and 
E5−2(L = 2) = E3(L = 2) which can be seen to sum up to E3−2 5−2(L = 2). Note 
that this energy is different from all one-dimensional energies because L = 2 is not 
a factor of the number 15.

3. Energy spectrum of two-dimensional motion

For a given scaling parameter L we can construct numerically 
a potential V (1) = V (1)(x; L) such that the solutions of the time-
independent Schrödinger equation

Ĥ (1)
x ϕ�(x; L) ≡

(
− h̄2

2μ

d2

dx2
+ V (1)(x; L)

)
ϕ�(x; L)

= E�(L)ϕ�(x; L) (6)

for the real-valued energy wave functions ϕ� which describes the 
motion of a non-relativistic particle of mass μ along the x-axis 
just reproduces the spectrum (1) for the energies E�(L). Here we 
have indicated by the argument L after the semicolon that the 
potential V (1) as well as the wave functions ϕ� depend on the 
scaling parameter. Moreover, the superscript denotes the number 
of dimensions. However, for the sake of simplicity in notation we 
suppress the superscripts in the energy eigenvalues since a single 
or a pair of indices already suggests the number of dimensions.

The iteration algorithm to obtain V (1] is based on the
Hellmann–Feynman theorem and is described in a previous paper
[8]. In Fig. 1 we show V (1) together with the eigenfunctions ϕ�

for 0 ≤ � ≤ 6 for the case L = 2. No degeneracy is present in this 
one-dimensional problem.

In this Letter we consider a particle which moves in the x–y
plane under the influence of the potential

V (2)(x, y; L) ≡ V (1)(x; L) + V (1)(y; L) (7)

shown in Fig. 2 for L = 2 and formed by the sum of two such 
potentials each of which displays the logarithmic energy spec-
trum (1).
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