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This Letter proposes an algorithm to detect an unknown deterministic signal hidden in additive white 
Gaussian noise. The detector is based on recurrence analysis. It compares the distribution of the similarity 
matrix coefficients of the measured signal with an analytic expression of the distribution expected in the 
noise-only case. This comparison is achieved using divergence measures. Performance analysis based on 
the receiver operating characteristics shows that the proposed detector outperforms the energy detector, 
giving a probability of detection 10% to 50% higher, and has a similar performance to that of a sub-
optimal filter detector.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Deciding whether a measured data sequence is noise only or 
contains a short deterministic fraction within the observation time 
is of greatest importance in several application fields, such as radar 
interception, underwater acoustic signal detection, and analysis of 
medical signals. The general framework of a signal detector is clas-
sical, as the detector has to choose between one of the following 
hypotheses:

• H0: the measured signal is noise only: x(t) = n(t)
• H1: the measured signal has a deterministic part hidden in 

additive noise: x(t) = s(t) + n(t)

where n(t) is white Gaussian noise (WGN), and s(t) is the de-
terministic signal to be detected. To solve this signal detection, 
a statistical test is computed on the data that are measured, and 
then compared to a detection threshold [1].

The choice of the statistical test and the estimation of its prob-
ability density functions (PDFs) under hypotheses H0 and H1 de-
pend on the amount of a-priori knowledge we have about the 
signal we want to detect and about the noise that it contains. 
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When the waveform of the signal to detect is fully known, the 
optimum statistical test is known as a matched filter [1]. For the 
opposite situation, when the waveform of the deterministic signal 
is not known, classical detectors are usually based on signal energy 
[1] or on high-order statistics [2,3], and perform non-Gaussianity 
tests. Also, there are several approaches that can be used to set 
the detection threshold, including the Neyman–Pearson method, 
the Bayes’ criterion, the maximum a posteriori, and the false dis-
covery rate [1].

This Letter aims to present a new detection scheme using an 
approach that was inspired by recurrence plots [4] and is com-
bined with divergence measures, to detect short (few tens to hun-
dreds of samples) unknown deterministic signals in additive WGN. 
Recurrence plots were introduced to study the stationarity of non-
linear dynamical systems [4], and have been shown to be useful for 
a large set of applications, like geology [5], climatology [6], music 
[7] and analysis of medical signals [8], to name but a few. As re-
currence plots show different patterns that depend on the dynamic 
of the system (i.e., random, periodic, chaotic), several approaches 
have been presented in the literature to quantify and distinguish 
between these three different dynamical behaviors, and particu-
larly for deterministic signals in random process [9–15]. A common 
point to all of these recurrence plot studies is their use of what 
is known as recurrence quantification analysis (RQA) [8,16,17] to 
decide whether the measured signal is noise or not. Thus, a clas-
sical detection scheme in the recurrence plot community can be 
summed-up as follows:
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x(t) −→ SM −→ RP −→ RQA −→ Detector (1)

where SM represents the similarity matrix, and RP the recurrence 
plot. However, distributions of RQA metrics under hypotheses H0
and H1 do not generally follow existing distributions, and finding 
analytic expressions for these latter is not straightforward [15].

Instead of using RQA, we restrict our detector to only the use of 
the similarity matrix, which is sometimes called the distance ma-
trix or distance plot in the literature [15]. The similarity matrix is 
the intermediate matrix that is obtained before applying the recur-
rence threshold that leads to the recurrence plot. Thus, we avoid 
the choice of this recurrence threshold and our detection scheme 
comes down to:

x(t) −→ SM −→ Detector (2)

Our detector compares the empirical distribution of the similarity 
matrix coefficients of a measured signal with the distribution that 
is expected if the measured signal is WGN. The expression of this 
expected distribution can be derived analytically more easily than 
the RQA distribution. The comparison between the empirical and 
the analytic distributions is carried out with a goodness-of-fit test 
that is based on statistical divergences [18].

Overall, the detector presented in this Letter follows the same 
scheme as that proposed by Michalowicz [19]. Our algorithm dif-
fers from that of Michalowicz [19] in the use of divergence mea-
sures instead of a modified version of the χ2 test to compare the 
analytic and the empirical distributions of the similarity matrix co-
efficients. Classical χ2 test cannot be used because the coefficients 
of the similarity matrix are not fully independent of each other, 
as demonstrated by Michalowicz [19], which can bias the result 
of the test by giving much more false-positive detection than ex-
pected [19]. Finally, we do not compute the similarity matrix with 
a Euclidean norm only, as we propose the use of Pearson’s corre-
lation coefficient and the dot-product for this purpose [20].

After a brief recall of the recurrence plot method, we describe 
the different steps of our detection algorithm. Strong emphasis is 
put on derivation of the analytic distributions of the similarity ma-
trix coefficients under hypothesis H0, when the Euclidean norm, 
Pearson’s correlation coefficient, and the dot-product are used to 
compute the similarity matrix. Then, we discuss the choice of an 
appropriate divergence function to compare the analytic and em-
pirical distributions. The third part presents the performances of 
our detector through the use of receiver operating characteristic 
(ROC) curves. Three different deterministic signals are used in this 
part: a periodic signal, a chaotic Rössler system and a real acous-
tic signal. The influence of the degrees of freedom involved in our 
detection scheme are also investigated, such as the choice of the 
similarity function or the divergence measure. The performance of 
the proposed detector is compared with that of an energy detector, 
a sub-optimal filter detector and the optimal matched-filter detec-
tor, which are commonly used in signal processing.

2. Recurrence plots

Recurrence plots were introduced to study complex systems 
and are aimed at visualizing the recurrence of their phase space 
trajectory [4]. Transforming a data sequence to a recurrence plot 
representation involves three main steps.

First, the phase space trajectory of the measured signal x(i) (i =
1, . . . , N) is reconstructed using the time delay embedding method 
[21,22]. Each phase space vector is given by:

−−−−−→
xm(i) = [x(i), x(i + τ ), . . . , x(i + (m − 1)τ )] (3)

where m is the embedding dimension, and τ is the delay.

The second step consists of measuring the level of similarity be-
tween two vectors of the phase space trajectory: 

−−−−−→
xm(i) and 

−−−−−→
xm( j). 

Calculating the similarity between all of the possible pairs of phase 
space vectors leads to the similarity matrix that is defined by:

d(i, j) = Sim
( −−−−−→

xm(i) ,
−−−−−→
xm( j)

)
(4)

where Sim( ., .) is the function that is chosen to study the like-
ness of the phase space vectors. A lot of different mathematical 
functions can be used for this step. Spatial distances, and partic-
ularly the Euclidean norm, are mostly used for this purpose by 
the recurrence plot community [23]. In this Letter, we will intro-
duce new functions, i.e., Pearson’s correlation coefficient and the 
dot-product, which are common similarity measures in signal pro-
cessing, but not in the recurrence plot community.

Finally, as the recurrence plot is obtained through the compari-
son of each coefficient of the similarity matrix to a threshold, the 
recurrence plot is a binary matrix where the coefficient of index 
(i, j) is 1 if 

−−−−−→
xm(i) and 

−−−−−→
xm( j) are considered as similar, and is 0 

otherwise.

3. Method

3.1. Overview of the signal detection scheme

The signal detection scheme must give an answer that allows 
us to decide whether a finite sequence of discrete samples con-
tains a deterministic signal or noise only. After calculating Eq. (3)
and Eq. (4), the PDF of the similarity matrix coefficients is built. 
This PDF is expected to fit a given theoretical PDF if the measured 
signal is only WGN. We use a divergence measure to compare 
the theoretical expected PDF under hypothesis H0 with the em-
pirical PDF associated with the similarity matrix of the measured 
signal. We recall that in probability theory, a divergence measure 
is a mathematical function that quantifies the distance between 
two probability distributions. The result of the divergence mea-
sure is a positive number D that we compare with a detection 
threshold λ. If D is below this threshold, this means that the dis-
tributions look alike, and consequently that the measured signal is 
WGN. For the opposite, i.e., if D is greater than the threshold, this 
means that the empirical PDF differs from the theoretical noise 
PDF, and thus that a deterministic signal is present. The thresh-
old λ is chosen according to the Neyman–Pearson criterion. We 
recall that when performing a hypothesis test between two hy-
pothesis H0 versus H1, Neyman–Pearson criterion is the one that 
maximizes the probability of detection while guaranteeing a given 
probability of false alarm (Pfa). With other words, a threshold fixed 
by the Neyman–Pearson criterion maximizes the probability (Pd) 
of choosing hypothesis H1 when H1 is effectively true and rejects 
hypothesis H0 with a probability Pfa when H0 is effectively true. 
To apply this criterion, we use Monte-Carlo simulations to built 
the distribution of the divergence measures D between the ana-
lytic PDF expected under hypothesis H0 and the empirical PDF of 
the similarity matrix coefficients of finite length WGN. All of the 
steps of this detection scheme are summarized in Fig. 1.

3.2. Analytical distribution of the similarity matrix coefficients in the 
‘noise only’ case

3.2.1. Hypothesis
Under hypothesis H0, we assume that the measured samples 

x(1), x(2), . . . , x(n) from a given sequence are independent Gaus-
sian random variables with zero mean and variance σ 2.

To obtain the similarity matrix, we look at the similarity be-
tween the vectors 

−−−−−→
xm(i) = [x(i), x(i + τ ), . . . , x(i + (m − 1)τ )]

and 
−−−−−→
xm( j) = [x( j), x( j +τ ), . . . , x( j + (m −1)τ )] (with i �= j), the 
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