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A simple and analytical expression for the variation of the lower bound and upper bound of the 
population density ρ0 of hyperfine component μ = 0 particles in the ground state of spin-1 condensates 
against a magnetic field B has been derived. The lower bound has a distinguished feature, namely, it will 
tend to the actual ρ0 when B tends to zero and infinite. This feature assures that, in the whole range 
of B , the lower bound can provide an effective constraint. Numerical examples are given to demonstrate 
the applicability of the bound.
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The spinor condensates, as tunable systems with active spin-
degrees of freedom, are rich in physics and promising in applica-
tion. Since the pioneering experiment on spin-1 condensates [1]
the study of spin- f systems becomes a hot topic. In this study an 
important observable is the population of the particles lying in a 
given hyperfine-component μ = − f to f . This quantity is popu-
larly measured in various experiments and is a key to relate ex-
periments to theories [1–5].

Let the population density of μ = 0 particles in the ground 
state (g.s.) of spin-1 condensates be denoted as ρ0. Recently, an 
inequality for the lower bound of ρ0 under a magnetic field B has 
been derived [6]. However, when the related parameters are given 
in a broad domain frequently accessed in experiments, this lower 
bound appears as a negative value (refer to Appendix A). Since a 
negative lower bound for a positive value is not useful, a substan-
tial improvement is necessary.

The aim of this paper is to derive an applicable lower bound for 
ρ0 so that it could be qualitatively known before any precise the-
oretical calculations and/or experimental measurements are per-
formed. In Ref. [6] the term 〈�gs|V̂ |�gs〉 (where �gs is the g.s. 
wave function and V̂ is the total interaction) is assumed to be 
non-negative, and its minimum (which is zero) is used to derive 
the inequality. Alternatively, we think that 〈�gs|V̂ |�gs〉 is an im-
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portant term, therefore it has been fully taken into account in 
our derivation. In addition, a reasonable approximation for �gs
has been introduced. In this way, a much higher lower bound to-
gether with an upper bound for ρ0 can be obtained. Besides, the 
bound given in [6] is only for the case with the total magnetization 
M = 0. However, under a magnetic field B , M is a good quantum 
number depending on how the condensate is experimentally pre-
pared. Thus, different choices of M are allowed. Furthermore, it has 
been found as early as in 1998 that the g.s. of the 87Rb and 23Na 
condensates have the ferromagnetic and polar phases, respectively. 
Since their spin-textiles differ from each other greatly [7,8], a more 
precise lower bound should depend strongly on the species. There-
fore, in the following derivation, both the M-dependence and the 
species-dependence have been considered.

Note that, for spin-1 atoms, the dipole–dipole interaction is 
very weak, thus the coupling between the spatial modes and 
spin-modes is weak (incidentally, the light-induced quasi-spin–
orbit coupling is not in the scope of this paper). Furthermore, the 
spin-dependent force is nearly two orders weaker than the central 
(spin-independent) force1 thus the spin-modes are much easier to 
get excited. Accordingly, a group of states free from any spatial 

1 Let c0 and c2 be the strengths of the spin-independent (central) and spin-
dependent interaction, respectively. For 87Rb, |c0/c2| = 215; while for 23Na, 
|c0/c2| = 31.9. Thus, the spin-independent force is much stronger. Note that eq. (1)
can be called the single mode approximation (SMA). However, it is not the same as 
the SMA usually adopted under the framework of the mean-field theory. In Eq. (1)
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excitations would be the lowest and would contain various spin-
modes. With this in mind, it is reasonable to assume that the 
g.s. would have all the particles falling into the same spatial state 
which is most advantageous for binding. Thus the g.s. appears as

�gs = �iφ(ri)�gs (1)

where �gs denotes the total spin-state of the g.s. (see footnote 1).
If some particles were not in φ(ri) but in a higher state, spatial ex-
citation would be involved and therefore should be avoided. Eq. (1)
is the basic assumption of this paper. The following derivation is 
based on this assumption.

The Hamiltonian is

Ĥ = Ĥ0 + V̂ 0 + V̂ 2 − p
∑

i

f̂ iz + q
∑

i

f̂ 2
iz (2)

where Ĥ0 = ∑
i(− h̄2

2m ∇2
i + U (ri)) includes the kinetic and trap en-

ergies, V̂ 0 = c0
∑

i< j δ(ri − r j) and V̂ 2 = c2
∑

i< j δ(ri − r j) f̂i · f̂ j , 
where f̂i is the spin-operator of the i-th particle (c0 and c2 are re-
lated to the scattering lengths of the spin-channels, refer to [7]). 
The last two terms are for the linear and quadratic Zeeman en-
ergies, where p ∝ B and q ∝ B2. An important feature of Ĥ is 
the conservation of M as mentioned. For convenience, M ≥ 0 and 
N − M being even are assumed (the generalization to other choices 
of M is straightforward).

For any normalized state � �= �gs, obviously we have

〈�gs|Ĥ|�gs〉 ≤ 〈�|Ĥ|�〉 (3)

Let us introduce the Fock-spin-state |N1, N0, N−1〉, where Nμ par-
ticles are in the μ-component, μ = 0, ±1. When M is conserved, 
we have N±1 = (N − N0 ± M)/2, therefore the Fock-spin-state 
can be simply denoted as |N0〉. Let us make the first choice 
� ≡ �iφ(ri)|N − M〉 where � and �gs have the same spatial 
wave function and the same magnetization M . Due to this spe-
cific choice, it is straightforward to prove

〈�gs|Ĥ0 + V̂ 0 − p
∑

i

f̂ iz|�gs〉 = 〈�|Ĥ0 + V̂ 0 − p
∑

i

f̂ iz|�〉 (4)

Furthermore, we have the identity

N∑
i< j

f̂ i · f̂ j = 1

2
Ŝ2 − N (5)

where Ŝ is the operator of the total spin. In addition, for any all-
symmetric total spin-state �, we have the equality

〈�|
∑

i

f̂ 2
iz|�〉 = 〈�|N − N̂0|�〉 (6)

where N̂0 is the operator for the number of μ = 0 particles.
Making use of Eqs. (4), (5) and (6), the inequality Eq. (3) can be 

rewritten as

Xc2

2
〈�gs| Ŝ2|�gs〉 − q〈�gs|N̂0|�gs〉

≤ Xc2

2
〈N − M| Ŝ2|N − M〉 − q(N − M) (7)

where X ≡ ∫ |φ|4dr. The second term at the left is just qNρ0. The 
first term at the right can be obtained by using the more general 
formula given in Eq. (A5) of Ref. [9], and we have

〈N − M| Ŝ2|N − M〉 = (M + 1)(2N − M) (8)

only the spatial wave function is bound by the SMA, while the spin-degrees of free-
dom are completely free.

Let the totally symmetric eigenstates of Ŝ2 and Ŝ z be denoted as 
ϑS M , where N − S must be even and S ≥ M is required. It has been 
proved that, for a given pair of S and M , ϑS M is unique and the set 
{ϑS M} is complete [10]. Therefore, �gs can be expanded by this set. 
From the expansion, it is obvious that M(M + 1) ≤ 〈�gs| Ŝ2|�gs〉 ≤
N(N + 1) disregarding how �gs is.

For c2 < 0, 〈�gs| Ŝ2|�gs〉 could be replaced by N(N + 1) be-
cause the left side of Eq. (7) would become smaller thereby so that 
the inequality remains hold. With this replacement, Eq. (7) can be 
rewritten as

ρ0 ≥ N − M

N
[1 − |c2| N − M − 1

2q
X] ≡ BRb,1 (for Rb) (9)

Whereas for c2 > 0, 〈�gs| Ŝ2|�gs〉 could be replaced by M(M + 1), 
and we have

ρ0 ≥ N − M

N
[1 − |c2| (M + 1)

q
X] ≡ BNa,1 (for Na) (10)

Obviously, the right sides of Eqs. (9) and (10) are the lower 
bounds of ρ0 denoted as BRb,1 and BNa,1. Note that, when M is 
conserved, N1 must be ≥ M , and therefore N0 must be ≤ N − M . 
Thus the first term of BRb,1 and BNa,1, i.e., (N − M)/N , is just the 
upper bound of ρ0, and the second term denotes the difference 
of these two bounds. Note that the second terms of Eqs. (9) and 
(10) are negative and ∝ 1/q. Thus, these two inequalities demon-
strate that the lower bound is uprising and tends to the upper 
bound when q → ∞. Consequently, ρ0 is restricted in a narrow 
domain between the two bounds when q is large. Therefore, the 
value of ρ0 can be roughly evaluated. The evaluation would be-
come more and more accurate when q is larger. Note that, when 
q → ∞, N0 should be maximized so that the quadratic Zeeman 
energy can be minimized. Due to this physical reason, the upper 
bound (in which N0 is maximized) should be the actual value of 
ρ0 when q → ∞. Therefore, both BRb,1 and BNa,1 tend to the ac-
tual ρ0 when q → ∞. This is a notable feature and is confirmed 
via numerical results shown below.

Let us make the second choice � ≡ �iφ(ri)ϑN M (for Rb) or 
�iφ(ri)ϑMM (for Na).2 It is reminded that, in the first choice, 
� is close to the g.s. under a strong q. In this choice � is 
close to the g.s. under a weak q. Accordingly, while the left side 
of the inequality Eq. (7) remains unchanged, the right side be-
comes Xc2

2 N(N + 1) − q〈ϑN M |N̂0|ϑN M〉 (if Rb), or Xc2
2 M(M + 1) −

q〈ϑMM |N̂0|ϑMM〉 (if Na). From Eqs. (18) and (21) of Ref. [11], we 
have

〈ϑN M |N̂0|ϑN M〉 = (N − M)(N + M)

N(2N − 1)
(11)

and

〈ϑMM |N̂0|ϑMM〉 = N − M

N(2M + 3)
(12)

These two formulae are exact. With these formulae and with the 
same logic in deriving Eqs. (9) and (10), the inequality becomes

ρ0 ≥ N2 − M2

N(2N − 1)
≡ BRb,2 (for Rb) (13)

and

ρ0 ≥ N − M

N(2M + 3)
≡ BNa,2 (for Na) (14)

Note that, BRb,2 and BNa,2 do not depend on q and they both are ≤
the upper bound (N − M)/N . Note that, when q → 0, the g.s. �gs

2 This choice is for N − M being even. If N − M is odd, ϑMM should be replaced 
by ϑM+1,M because N − S must be even [10].
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