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Non-local effects in generalized heat-transport equations provide a mesoscopic approach to phonon 
hydrodynamics. In contrast to usual phonon hydrodynamics with non-slip heat flow, we consider, in 
analogy to rarefied gas dynamics, a slip heat flow along the walls. This way the effective thermal 
conductivity behaves as Kn−1 instead of as Kn−2, which is the behavior in usual phonon hydrodynamics, 
Kn being the Knudsen number, i.e., the ratio between the mean-free path of the heat carriers and a 
characteristic size of the system. Here we revisit previous formulations to provide a more explicit and 
clearer interpretation of the differences between the effective mean-free path in the non-local term of 
the generalized transport equation for q, and that in the thermal conductivity.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Non-local effects are especially relevant in heat transport in 
nanosystems where the characteristic size of the system be-
comes comparable to (or smaller than) the mean-free path of 
the heat carriers, especially phonons. In this case, not only re-
sistive (specular and diffusive) phonon collisions against the 
walls arise, but also collective phonon effects related to normal 
(momentum-conserving) phonon–phonon collisions, redistributing 
among phonons the total conserved momentum, as it was pointed 
out in detail by Guyer and Krumhansl in Refs. [1,2]. The role of 
these collective effects on heat transport and thermal conductiv-
ity, in contrast to the individual phonon effects of resistive colli-
sions, has been recently developed in a kinetic-collective model of 
phonon heat transfer [3,4], pointing out the relevance of collective 
(hydrodynamics-like) regime. The special relevance of collective-
hydrodynamic regime in two-dimensional systems, as for instance 
graphene, has been also recently emphasized [5,6]. These recent 
microscopic developments may give a renewed interest to previous 
mesoscopic phenomenological descriptions of phonon hydrody-
namics [7–12].

Mesoscopic approaches to non-local heat transport and phonon 
hydrodynamics have been a stimulus for non-equilibrium thermo-
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dynamics beyond classical local-equilibrium regime [13–21]. A rel-
evant problem in this frontier refers to boundary conditions for the 
heat flux [7,8,22,23].

Guyer and Krumhansl [1,2] considered non-slip (i.e., vanishing) 
conditions for the heat flux in the hydrodynamic regime. However, 
this may lead to a too strong reduction of the associated thermal 
conductivity in this regime in terms of the characteristic size of 
the system. In order to improve the agreement with experimen-
tal observations and with theoretical analysis of kinetic theory of 
rarefied gases, it has been proposed to consider a slip (i.e., non-
vanishing) heat flow along the walls [7,8,10,22–25].

The phonon mean-free path and its relative value in comparison 
with the characteristic size of the system also becomes a relevant 
parameter. However, the phonon mean-free path depends on the 
phonon frequency and on the frequency dependence of the several 
collision rates, and this influences the size dependence of several 
aspects of heat transport [26–28]. Furthermore, the mean-free path 
appears in different ways in the thermal conductivity, in the non-
local terms in generalized heat-transport equations, and in the slip 
condition along the walls.

Here, we discuss the value of the effective phonon mean-free 
path appearing in the generalized heat-transport equation of some 
mesoscopic versions of phonon hydrodynamics [7,8,12,29] as com-
pared to the effective mean-free path derived from the thermal 
conductivity. We also comment on its role in the boundary condi-
tions referring to a slip heat flow along the walls.
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The paper runs in the following way. In Section 2 we present 
the basic equations and carry out the explicit discussion in 
smooth-wall nanowires. In Section 3 we generalize the discus-
sion to rough-wall nanowires. Section 4 presents some microscopic 
viewpoints and a final discussion.

2. Rarefied phonon hydrodynamics: a mesoscopic approach

In the analysis of heat transport in nanosystems, memory ef-
fects (in the form of relaxational terms), as well as non-local and 
non-linear effects have to be taken into account [14,15,19,29]. This 
requires that heat-transport equations have to be more general 
than the classical Fourier law. In Refs. [7–10,12] it was proposed 
a generalized non-local heat-transport equation of the form

τR q̇ + q = −λ∇T + a2 (T ) �2
(
∇2q + 2∇∇ · q

)
, (1)

where q is the local heat flux, τR is the average collision time of 
resistive phonon collisions, related to the collision times of umk-
lapp phonon–phonon collisions τu , phonon–impurity collisions τi , 
and phonon–defect collisions τd as

τ−1
R = τ−1

u + τ−1
i + τ−1

d ,

according to Matthiessen rule, λ is the bulk thermal conductivity, 
and � is the phonon mean-free path. Moreover, in those papers the 
dimensionless function a (T ) (which will be analyzed in this paper) 
was taken equal to 1. It is also worth noticing that in Refs. [7–10,
12], in considering Eq. (1) it is assumed that � = vτR and means 
the phonon mean-free path appearing in the usual simple expres-
sion for the bulk thermal conductivity

λ = 1

3
cv v�, (2)

with cv being specific heat per unit volume, and v phonon speed 
in the Debye approximation.

In Refs. [7,8] the authors assumed that the local heat flux q just 
arises from the sum of two different contributions: the bulk con-
tribution qb and the wall contribution qw . The former contribution 
arises from the solution of Eq. (1) for non-slip conditions along the 
walls, and the latter contribution, instead, is given by the following 
constitutive equation

qw = Ca (T ) �

(
∂qb

∂r

)
r=R

, (3)

where C stands for a dimensionless coefficient (accounting for 
specular and diffusive reflections), and � was assumed to be the 
same appearing in Eqs. (1) and (2). Furthermore, in Eq. (3) r means 
the distance from the longitudinal axis of the nanostructure at 
hand, and R is its characteristic size. Note that Eq. (3) is analo-
gous to the slip condition used for the gas velocity in rarefied gas 
dynamics [30–32].

In this paper, we no longer assume a (T ) ≡ 1, and investigate 
the influence of a (T ) � in describing the non-local effects both in 
the second term of the right-hand side of Eq. (1), and in the slip 
condition (3).

Indeed, in steady-state situations, from the local balance of the 
internal energy u per unit volume (in the absence of heat source), 
i.e.,

u̇ = −∇ · q,

it follows that the local heat flux is a solenoidal vector, that is, 
∇ · q = 0. Owing this, whenever the heat flux can be neglected 
with respect to its spatial derivatives [7,8], Eq. (1) simply becomes

a2�2∇2q = λ∇T ,

Table 1
Bulk thermal conductivity λ (W/mK) and phonon mean-free path � (nm) for sili-
con at different values of temperature (K).

T = 150 T = 100 T = 80 T = 60 T = 50 T = 40 T = 30

λ 409 884 1340 2110 2680 3530 4810
� 181 557 1432 3837 6681 11 517 16 354

Table 2
Experimental values of the effective thermal conductivity (W/mK) in silicon 
nanowires with different radii R (nm) and at several values of temperature T (K)

in the absence of backscattering [33–35].

R λeff

T = 150 T = 100 T = 80 T = 60 T = 50 T = 40 T = 30

115 46 45 40 27 19 13 5
56 28 23 21 16 11 7 3
37 17 14 11 8 6 4 1.7

whose solution, combined with Eq. (3), turns out that in cylindrical 
nanowire the local heat flux in any transversal section is

q (r) = λ

4a2�2

(
R2 − r2 + 2Ca�R

) �T

L
. (4)

Then, if one defines the effective thermal conductivity as

λeff =
(

Q tot

π R2

)
L

�T
, (5)

with Q tot = ∫ R
0 q (r) 2πrdr being the total heat flux along the 

nanowire, the coupling of Eqs. (4) and (5) leads to [7,8]

λeff = λ

8a2 Kn2 (1 + 4aC Kn) , (6)

wherein Kn ≡ �/R is the Knudsen number, R being the radius of 
the transversal section of the nanowire. In the limit of small val-
ues of the ratio R/� (that is, for high Knudsen numbers), Eq. (6)
reduces to

λeff = λC

2a Kn
. (7)

This linear behavior of the effective thermal conductivity in 
terms of Kn−1 is in contrast with the quadratic behavior Kn−2 ob-
tained from Eq. (6) for C = 0, i.e., in the absence of slip heat flow, 
which differs from experimental behavior.

Equations (6) and (7) describe a strong reduction of the thermal 
conductivity in nanowires as compared to bulk thermal conductiv-
ity. In particular, the values of the bulk thermal conductivity for 
Si for several temperatures are given in Table 1, together with the 
respective value of the mean-free path as obtained from Eq. (2). 
In Table 2, the effective thermal conductivity for Si nanowires of 
several radii are given for the same temperatures as in Table 1 ac-
cording to the experimental data in Refs. [33–35] in the absence 
of backscattering. Comparison of Tables 1 and 2 shows indeed the 
mentioned strong reduction.

In Ref. [8], wherein the coefficient a (T ) in Eq. (1) was taken 
equal to 1, the values of the parameter C as a function of temper-
ature were searched to fit the data of Table 2, by using as input 
the data of Table 1 for λ (T ) and � (T ), and the following result 
was derived

C (T ) = C3T 3 + C2T 2 + C1T + C0, (8)

with C0 = −1.5, C1 = 9.4 × 10−2 K−1, C2 = −1.1 × 10−3 K−2, 
C3 = 4.0 × 10−6 K−3.

Though a (T ) in Ref. [8] could have been considered as a fur-
ther fitting parameter, it was taken equal to 1 in order to keep the 
maximum simplicity in the phenomenological description.
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