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We apply an external feedback control technique to vibrating microcantilevers in atomic force microscopy.
Here we have no difficulty in getting information on periodic orbits required for application of the
external feedback control unlike controlling chaos since stable orbits are used as reference ones.
This approach enables us not only to control vibrations of the cantilevers but also to measure the
sample surfaces (surface topographies) simultaneously. The efficiency and validity of our approach is
demonstrated by numerical simulations and a theoretical analysis with the assistance of numerical
computations.
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1. Introduction

Atomic force microscopy (AFM) [1–3] with tapping (or intermit-
tent contact) mode operation has been widely used in nanometer-
scale characterization of material surfaces, especially for soft ma-
terials such as polymers, DNA molecules and proteins (see [4–7]
and references therein). In the standard AFM, a microcantilever tip
is excited at a frequency near the primary resonance and the sam-
ple surface is imaged while the tip–surface distance is controlled
so that the oscillation amplitude is kept at a fixed value.

Several nonlinear phenomena exhibited by microcantilevers in
AFM have also been numerically, experimentally and theoreti-
cally revealed. One of the characteristic and interesting motions
is “bistable” behavior occurring near the sample surfaces. Hence,
the microcantilevers exhibit hysteretic responses when the driv-
ing frequency is swept up and down through the primary reso-
nance (see [4,8] and references therein). Moreover, several bifurca-
tions and chaotic motions were numerically and/or experimentally
observed [9,10] and theoretically analyzed [11–17]. In particular,
an agreement between experimental measurements and numerical
computations for a mathematical model in which the tip–surface
interaction is represented by the van der Waals and Derjaguin–
Muller–Toporov (DMT) [18] forces is impressive [9,10].

On the other hand, chaos control has attracted much atten-
tion in the past two decades and several techniques for controlling
chaotic dynamical systems have been developed [19–21]. Among
others, Pyragas [22] proposed two effective control methods for
continuous chaotic dynamical systems: external and delayed feed-
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back control techniques. In particular, the delayed feedback control
requires no knowledge of unstable periodic orbits to be stabilized
except their periods and has been applied experimentally to many
mechanical, electric, chemical and biological problems [20,21,23].
In contrast, the external feedback control requires precise informa-
tion on unstable periodic orbits, so that it has been experimentally
applied to real systems only in very limited cases [24].

In this Letter, we apply the external feedback control technique
to vibrating microcantilevers in AFM. Here we have no difficulty
in getting information on periodic orbits required for application
of the external feedback control unlike controlling chaos since sta-
ble orbits are used as reference ones. This approach enables us
not only to control vibrations of the cantilevers but also to mea-
sure the sample surfaces (surface topographies) simultaneously.
The efficiency and validity of our approach is demonstrated by
numerical simulations and a theoretical analysis with the assis-
tance of numerical computations. The mathematical model used
here is a slightly improved version of [9,10] and the same as the
one in [13,14].

2. Mathematical model

Fig. 1 shows our mathematical model for a vibrating mi-
crocantilever in atomic microscopy. Here the length is non-
dimensionalized by the tip–sample separation � when the can-
tilever is not excited and no tip–sample interaction occurs, while
the time is non-dimensionalized by the first mode frequency of
the cantilever. The cantilever base is excited by a dither piezo-
electric actuator with a constant amplitude γ and constant fre-
quency ω around a distance z from a reference position, so that
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Fig. 1. Cantilever configuration. Lines A and B represent the reference positions of
the microcantilever and sample surface, respectively. The variables and constants
except � are non-dimensionalized.

Fig. 2. Numerical simulation results for δ = 0.03, γ = 0.02, κ = 1, zs = 0.5, α =
4.4 × 10−3, β = 107, a = 0.076 and ω = 1: (a) Reference periodic response x̄(t);
(b) center of the cantilever base oscillation z(t); (c) Poincaré plots.

its displacement is given by γ cosωt + z. Note that z does not
represent the cantilever deflection. We assume the van der Waals
and DMT forces between a sphere (tip apex) and a flat surface
(sample) for the tip–sample interaction in tapping mode AFM as
in [4,9,10,13,14]. Approximating the beam deflection by the first
mode of the associated linear problem and applying the Galerkin
method, we obtain a mathematical model for the microcantilever,

ẍ + δẋ + x + f (1 − x − z + zs) = γ cosωt,

or as a first-order system

ẋ = y, ẏ = −x − δy − f (1 − x − z + zs) + γ cosωt, (1)

where zs is the displacement of the sample surface from a refer-
ence position and

f (x) =
{− α

x2 for x > a;
β(a − x)3/2 − α

a2 for x � a
(2)

with α,β constants. Here δ and a, respectively, represent the
damping constant and non-dimensionalized intermolecular dis-
tance. See [13] for the details on the model (1). When x < a in (2),
the tapping mode operation occurs.

Fig. 3. Numerical simulation results under the influence of white noise with inten-
sity of 0.01: (a) x̄(t); (b) z(t); (c) Poincaré plots. The other parameter values are the
same as in Fig. 2.

Fig. 4. Numerical simulation results for the center of the cantilever base oscillation,
z(t), for κ = 1, zs = 0.5 and ω = 1: (a) α = 5.5×10−4, β = 152, δ = 0.01, γ = 0.005
and a = 0.038; (b) α = 4.4 × 10−3, β = 107, δ = 0.1, γ = 0.06 and a = 0.076.

The reader may think that this model is too simple, especially
because only one vibrational mode of the beam is used. However,
such a model is widely used in studying microcantilevers of AFM
and enables us to succeed in understanding their dynamics [4,6].
Recall the impressive agreement between experimental measure-
ments and numerical computations for a similar model [9,10].

3. External feedback control

Now we describe our control approach for the microcantilever.
We first obtain a periodic response of the cantilever tip as a ref-
erence one when the center of the cantilever base oscillation and
the sample surface are at the reference positions, i.e., z = zs = 0.
This is an easy task unlike the chaos control case since the peri-
odic orbit is stable. Here we do not require that the sample surface
position is known. Let x̄(t) denote the reference response. If the
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