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theoretical frame. All results illustrate that the introduction of magnetic field enhances the stability of
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© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Bose–Hubbard model of interacting bosons on a lattice has been
used to describe superfluid-Mott insulator (MI) phase transition in
a variety of systems at zero temperature, e.g., Josephson arrays and
granular superconductors [1]. The recent suggestion to experimen-
tally observe this transition in a system of cold bosonic atoms in
an optical lattice [2] and its successful experimental demonstra-
tion [3] have aroused much theoretical [4–6] and experimental
[7,8] interests in this model. However in original Bose–Hubbard
model interactions among three and more bosons are completely
neglected, and the system is merely controlled by the two-body
interaction and tunneling effect which allow bosons to hop around
within the optical lattice. This kind of simple description for the
Hamiltonian is the reflection of pairing theory in condensed mat-
ter physics that particles interactions can be approximated as a
summation of pairwise events. Although pairing theory plays an
important role historically and also contains many ideas which are
qualitatively correct, the plethora of exotic quantum phases, such
as string nets [9], are often associated with ground states of Hamil-
tonians with three or more body terms.

In fact, the research of three-body interaction originated from
accurate calculation of ground state energy of boson system in
1959 [10]. Following the achievement of Bose–Einstein-Condensate
in 1995 determinations on detailed properties of three-body in-
teraction were revived [11,12], furthermore Büchler et al. [13]
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have suggested that polar molecules driven by microwave fields
give naturally rise to strong three-body interaction and derived
the complicated phase diagram of one-dimensional Bose–Hubbard
model with dominant three-body interaction.

Recently Chen et al. [14] have studied quantum phase transi-
tion between superfluid state and Mott insulator based on Bose–
Hubbard model with two- and three-body on-site interactions at
the mean field level and found some interesting phenomena such
as the rotation of phase boundary around a fixed point and ex-
tended areas of Mott insulator. To the best of our knowledge an
unstudied problem is that of the Bose–Hubbard Hamiltonian un-
der a magnetic field. As is known to all that bosons used in cold
gas experiments are uncharged and would not be directly affected
by an external magnetic field. However, recent studies have shown
in detail that effective magnetic field, even non-Abelian magnetic
field, can be generated for neutral atoms generally by two meth-
ods. Perhaps the simplest and most common method is rotating
the whole system, and canceling the centrifugal force of the rota-
tion by an external quadratic trap [15], while the other one [16]
is by means of laser methods employing dark state. This method
is based on the fact that the adiabatic motion of a λ-type three-
level atom creates a nondegenerate dark state in the presence
of external laser fields. In addition there are also other methods
to create artificial magnetic field such as Laser-assisted tunnel-
ing and lattice tilting [17], BEC immersion [18] and two-photon
dressing by laser fields [19]. Irrespectively of which method we
adopt, the fundamental effect on the system is qualitatively simi-
lar.

In this Letter, we are interested in classical and quantum phase
transitions of Bose–Hubbard model with two- and three-body
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on-site interactions under a magnetic field and assume a two-
dimensional square lattice in the XY plane, under a magnetic field
in the Z direction. Two-dimensional Bose–Hubbard model is easily
achieved by imposing strong laser to suppress the tunneling ef-
fect along Z axis. At zero temperature the phase transition, which
are driven by quantum fluctuation and called quantum phase tran-
sition, happens between superfluid phase and MI, while at finite
temperature MI is replaced by normal state which possesses finite
compressibility so the phase transition happens between super-
fluid phase and normal state, which are driven by the competition
between energy and entropy and called classical phase transition.
Here we do not include the crossover from MI to normal state at
finite temperature since there is not a conventional definition for
this crossover as far as what we know is concerned. In Section 2,
an effective single-site Hamiltonian is written out by decoupling
hopping term, then we point out the similarity between this re-
duced Hamiltonian and that of Bose–Hubbard model in an one-
dimensional superlattice for the purpose of finding the solution. In
Section 3, we analytically derive the phase boundaries of classical
and quantum phase transition under a unified frame by analyzing
the stability of normal state, at the same time numerical results
with and without the magnetic field are also shown. A brief con-
clusion is given in Section 4.

2. Theory

The Hamiltonian of Bose–Hubbard model with on-site two-
body interaction in a magnetic field is derived in details in [20].
The inclusion of on-site three-body interaction is very direct, so
the Hamiltonian in this Letter is

H = −t
∑
〈i j〉
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x dy

]
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i b j + U

2

∑
i

ni(ni − 1)

+ W

6

∑
i

ni(ni − 1)(ni − 2) − μ
∑

i

ni (1)

where the summation in the first term is done for the nearest
neighbors only and b†

i (bi) is the bosonic creation (annihilation)

operator with ni = b†
i bi the particle number operator for bosons

at the lattice site i. The parameter t is the hopping term and U ,
W are two- and three-body repulsive interaction strength among
bosons. The last term involving the chemical potential μ is added
because it is very convenient to work in the grand canonical en-
semble. All the coordinates �ri , x, y are scaled by the lattice con-
stant a hence are dimensionless. φ = Ba2/(hc/e) represents the
number of magnetic flux quanta penetrating the unit cell with
B being effective magnetic field and φ0 = hc/e magnetic flux
quanta. The presence of the effective magnetic field introduces fac-

tor exp[i2πφ
∫ �ri
�r j

x dy], called Peierls phase factor which completely

absorbs the effect of the magnetic field, to modify hopping term
but keeps interaction terms invariant. Thus in contrast to nonmag-
netic solution [14] we naturally expect a modified phase boundary
in view of the fact that superfluid-Mott insulator phase transition
comes from the competition between hopping term and on-site in-
teraction strength. In fact the Hamiltonian (1) is an expression un-
der Landau gauge in which hopping along the Y axis only achieves
the Peierls phase factor, and we can also alter the Peierls phase
factor by transforming to other gauge.

U = W = 0 corresponds to noninteracting bosons. In this case
the energy spectrum of Hamiltonian, denoted by Hofstadter but-
terfly [21], shows a self-similar fractal structure on the energy-
magnetic flux plane. The experimental observation of this energy
spectrum is very difficult due to weak magnetic field and small

area of lattice cell. As suggested by Jaksch and Zoller [17], it is
promising to observe Hofstadter butterfly in ultracold atom gas
in the light of their highly controllability and operability. Below
we will regard the Hamiltonian (1) as our starting point to study
its zero and finite temperature phase diagram by Gutzwiller ap-
proximation, and will find that the Hofstadter butterfly have an
important effect on phase boundary.

The Gutzwiller approach is a self-consistent mean-field method
and equivalent to the decoupling approximation [22,23] to the
hopping term

b†
i b j = 〈

b†
i

〉
b j + b†

i 〈b j〉 − 〈
b†

i

〉〈b j〉 = αib j + b†
i α j − αiα j (2)

where αi = α∗
i is superfluid order parameter which distinguishes

the superfluid phase from normal state. If magnetic field vanishes,
the whole system is uniform and order parameter is also site-
independent. But we cannot suppose this when the magnetic field
appears. After this decoupling, the system is describable in terms
of a single-site Hamiltonian

Hnm = −t
[
b†

nm
(
α(n+1)m + α(n−1)m + e−i2πnφαn(m+1)

+ ei2πnφαn(m−1)
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where we label the site of lattice i by two ordered integers (n,m),
the first integer along the X axis and the second along the Y
axis. The Hamiltonian (3) has two striking characteristics. On one
hand its independence of Y component implies that system is
translational invariant along Y axis and we can suppose that or-
der parameter αnm = αn is independent of Y component. On the
other hand although it depends on X component, for rational
φ = p/q (p,q have no common factor) q-site translational sym-
metry along X axis is recovered and the order parameters have
periodicity αn = αn+q . The statement above drops a hint that our
calculations will be carried out on a q × 1 supercell with periodic
boundary conditions [24]. So the Hamiltonian is further reduced
into

Hn = −t
[
b†

n(αn+1 + αn−1 + 2αn cos 2πnφ) + H.C.
]

+ U

2
nn(nn − 1) + W

6
nn(nn − 1)(nn − 2) − μnn (4)

with n being integer from 1 to q. In addition, the Hamiltonian is
periodic as the function of magnetic field Hn(φ) = Hn(φ + K ) with
K being a random integer so that we only need consider φ ∈ [0,1).
Note also that in (3) and (4) we have neglected a constant term
which does not influence our result.

Now in order to find out solution for the reduced Hamiltonian
(4) more quickly, we compare the Hamiltonian (1) with that of
one-dimensional superlattice without magnetic field where there
are some nonequivalent atom sites in a single cell [25]. Easily
found that under the same Gutzwiller approximation two Hamil-
tonians are almost the same, and superlattice cell plays the same
role as q × 1 supercell we mentioned above if there are q atom
sites in superlattice cell. In view of this similarity the analytical
solution of reduced Hamiltonian (4) is viable.

The self-consistency of Gutzwiller method must be imple-
mented by the condition

αn = 1

Zn
Tr

(
bne−βHn

) = 1

Zn
Tr

(
b†

ne−βHn
)

(5)

with β = 1/(K B T ) and partition function Zn = Tr exp(−βHn). In-
troducing the notation γn = tαn , self-consistent condition can be



Download English Version:

https://daneshyari.com/en/article/1863637

Download Persian Version:

https://daneshyari.com/article/1863637

Daneshyari.com

https://daneshyari.com/en/article/1863637
https://daneshyari.com/article/1863637
https://daneshyari.com

