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In the framework of standard electrodynamics with linear local response, we construct a model that 
provides spontaneously broken transparency. The functional dependence of the medium parameter turns 
out to be of the Higgs type.
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1. Introduction

Physical models often involve phenomenological parameters or 
auxiliary fields characterizing the background spacetime or the 
background media. In most cases, dynamics of the model depend 
smoothly (continuously and differentiably) on the values of the 
background parameter. A non-smooth functional dependence usu-
ally represents a keystone issue of the model. The examples of 
such non-smooth behavior are well known in solid state physics 
as phase transitions at critical points. Another similar issue is the 
scalar Higgs model of spontaneous symmetry breaking, see e.g., 
[2]. In fact, the symmetry breaking phenomena can be viewed as 
an example of generic functional instability phenomena in dynam-
ical system, see [1].

In this paper, we present a simple phenomenological model of 
an electromagnetic medium that allows wave propagation only for 
a sufficiently big value of the medium parameter. For zero values 
of the parameter, our medium is the ordinary SR (or even GR) vac-
uum with the standard dispersion relation ω2 = k2. However, even 
infinitesimally small variations of the parameter modify the disper-
sion relation in such a way that it does not have real solutions, i.e., 
the medium becomes completely opaque. For higher values of the 
parameter, the dispersion relation is modified once more and once 
again it has real solutions. It is well known that the dispersion 
relation can be treated as an effective metric in the phase space. 
In our model, the vacuum Lorentz metric is spontaneously trans-
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formed into the Euclidean one and returns to be Lorentzian for a 
sufficiently big value of the parameter.

Skewon model can be viewed as a natural bridge between the 
high energy physics [3,4], and the solid state physics [5]. The cur-
rent result gives a new justification to this relation.

2. Skewon modified electrodynamics

We consider the standard electromagnetic system of two anti-
symmetric fields Fij and Hij that obey the vacuum Maxwell sys-
tem

F [i j,k] = 0, Hij
, j = 0. (1)

The fields are assumed to be related by the local linear constitutive 
relation [6,7],

Hij = 1

2
χ i jkl Fkl. (2)

Due to this definition, the constitutive tensor obeys the symme-
tries

χ i jkl = −χ jikl = −χ i jlk. (3)

The electromagnetic model (1) with the local linear response (2) is 
intensively studied recently, see [8–10], and especially in [7].

By using the Young diagram technique, a fourth rank tensor 
with the symmetries (3) is uniquely irreducible decomposed into 
the sum of three independent pieces.

χ i jkl = (1)χ i jkl + (2)χ i jkl + (3)χ i jkl. (4)
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The first term here is the principal part. In the simplest pure 
Maxwell case it is expressed by the metric tensor of GR

(1)χ i jkl = √|g|(gik g jl − gil g jk). (5)

In the flat Minkowski spacetime with the metric ηi j = diag(1, −1,

−1, −1), it reads

(1)χ i jkl = ηikη jl − ηilη jk. (6)

In quantum field description, this term is related to the photon.
The third term in (4) is completely skew symmetric. Conse-

quently, it can be written as

(3)χ i jkl = αεi jkl. (7)

The pseudo-scalar α represents the axion copartner of the pho-
ton. It influences the wave propagation such that birefringence 
occurs [11–13]. In fact, this effect is absent in the geometric op-
tics description and corresponds to the higher order approxima-
tion.

We turn now to the second part of (4), that is expressed as

(2)χ i jkl = 1

2

(
χ i jkl − χkli j). (8)

This tensor has 15 independent components, so it may be repre-
sented by a traceless matrix [7,15]. This matrix reads

Si
j = 1

4
εiklm

(2)χklmj . (9)

The traceless condition Sk
k = 0 follows straightforwardly from (9).

In order to describe the influence of the skewon on the wave 
propagation, it is convenient to introduce a covector

Yi = Si
jq j . (10)

Consider a medium described by a vacuum principal part (6) and 
a generic skewon. The dispersion relation for such a medium takes 
the form [14,16],

q4 = q2Y 2 − 〈q, Y 〉2. (11)

Here the scalar product 〈q, Y 〉 and the squares of the covectors q2

and Y 2 are calculated by the use of the metric tensor.
It can be easily checked that Eq. (11) is invariant under the 

gauge transformation

Y → Y + Cq, (12)

with an arbitrary real parameter C . This parameter can even be an 
arbitrary function of q and of the medium parameters C = C(q, S). 
With this gauge freedom, we can apply the Lorenz-type gauge con-
dition 〈q, Y 〉 = 0 and obtain the dispersion relation in an even 
simpler form

q4 = q2Y 2. (13)

This expression yields a characteristic fact [14]: The solutions qi
of the dispersion relation, if they exist, are non-timelike, that is, 
spacelike or null,

q2 ≤ 0. (14)

We will proceed now with the form (11) and with the skewon 
covector expressed as in (10). We can rewrite the dispersion rela-
tion as

q2 = 1

2

(
Y 2 ±

√
Y 4 − 4〈q, Y 〉2

)
. (15)

Fig. 1. Functional dependence f (σ ) = Aσ 4 − Bσ 2 illustrated for A = 1, B = 2.

Consequently, the real solutions exist only if

0 ≤ Y 4 − 4〈q, Y 〉2. (16)

Our crucial observation that the first term here is quartic in the 
skewon parameters Sij while the second term is only quadratic. 
Under these circumstances, the first term can be small for suffi-
ciently small skewon parameters and the inequality (16) breaks 
down. For higher values, the first term becomes essential and the 
inequality is reinstated.

3. A model

We now present a model where this possibility is realized, in-
deed. Consider a symmetric traceless matrix with two nonzero 
entries

S00 = S11 = σ . (17)

We denote the components of the wave covector as qi = (ω, k1,

k2, k3). The skewon covector has two nonzero components

Y0 = σω, Y1 = −σk1. (18)

Consequently,

Y 2 = σ 2(ω2 − k2
1

)
, 〈q, Y 〉 = σ

(
ω2 + k2

1

)
. (19)

Hence the inequality (16) takes the form

σ 4(ω2 − k2
1

)2 − 4σ 2(ω2 + k2
1

)2 ≥ 0. (20)

Observe that for every choice of the wave covector this expression 
is of the form f (σ ) = Aσ 4 − Bσ 2 with positive coefficients A, B . 
Quite surprisingly, this functional expression repeats the well-
known curve of the Higgs potential (Fig. 1).

The dispersion relation as it is given in Eq. (11) reads

q4 − q2σ 2(ω2 − k2
1

) + σ 2(ω2 + k2
1

)2 = 0. (21)

We extract here a full square term
(

q2 − σ 2

2

(
ω2 − k2

1

))2

+ σ 2(ω2 + k2
1

)2

− σ 4

4

(
ω2 − k2

1

)2 = 0. (22)

Using the identity

σ 2(ω2 + k2
1

)2 = σ 2(ω2 − k2
1

)2 + 4σ 2ω2k2
1 (23)

we rewrite it as(
q2 − σ 2

2

(
ω2 − k2

1

))2

+ 4σ 2ω2k2
1

+ σ 2

4

(
4 − σ 2)(ω2 − k2

1

)2 = 0. (24)



Download	English	Version:

https://daneshyari.com/en/article/1863669

Download	Persian	Version:

https://daneshyari.com/article/1863669

Daneshyari.com

https://daneshyari.com/en/article/1863669
https://daneshyari.com/article/1863669
https://daneshyari.com/

