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We demonstrate that some specific problems of Landau–Zener transitions in a qubit coupled to an 
environment (problems designed as dissipative) can be matched onto the frame of the original problem 
without dissipation, providing an appropriate Lie algebra. Focusing on the origin of quantum noises, 
the cases of bosonic and spin baths are considered and presented. Finally, making use of the algebra 
framework, the logic is shown in action for respectively two important additional quantum models, 
namely the Jaynes–Cummings and an isolated double quantum dots models.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decades, the traditional Landau–Zener (LZ) prob-
lem [1–4] has been considered as one of the fundamental prob-
lems in non-stationary quantum mechanics. Accordingly, it has 
attracted many important and remarkable studies from both fun-
damental interests (from material sciences to astrophysics) and 
technological considerations (nanotechnology, cryogenics, spintron-
ics, quantum transport and information processing, mass trans-
port, optical lattices, cold gases, etc.). However, the original LZ 
problem considered so far describes the dynamics of two iso-
lated states coupled by a linearly sweeping external transverse 
field of a constant amplitude and a time-dependent longitudinal 
field that passes through resonance with a transition frequency. 
This paradigmatic problem based on the universal SU(2) physics is 
of paramount importance for describing two energy levels which 
share the same symmetry point, and come close (hybridized eigen-
states) in the course of time around a critical point (avoided 
crossing) or cross (diabatic states) by linear variation of a con-
trol parameter (chemical potential, coordinate, time, energy, mag-
netic flux, etc.), as schematically presented in Fig. 1(a). Therefore, 
nonadiabatic transitions play a crucial role in numerous dynami-
cal phenomena in physical science ranging from physics, biology, 
chemistry to astrophysics [5–9].
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As far as we know, a generic Hamiltonian that describes this 
problem can be written in the basis of the pseudo-spin variables 
σk (k = x, y, z) of Pauli matrices, through the spin operators Sz and 
S± as follows [10]:

ĤLZ(t) = αt Sz + Δ(S+ + S−), (1)

where Sz is the z-projection of the total spin vector �S along the 
direction of the Zeeman field (z-direction), while S+ and S− are 
the raising and lowering spin operators, respectively. Here, the first 
term is the crossing energy levels, while the second and third 
terms represent the level repulsion. Thus, S± = 1

2 (σx±iσy) de-
scribes inter-level transitions, and Sz = 1

2 σz characterizes the spin 
flips. The coefficient α > 0 is a constant sweep velocity, while the 
parameter Δ is the regular inter-level distance between level posi-
tions that we assume real and constant from the moment t0 = −∞
when the magnetic field turns on, to the moment t = +∞ when it 
turns off.

Generally, the Lie group SU(2) describes the symmetry proper-
ties of a particle with arbitrary spin, both half-integer and integer, 
and one of the key sources is that the Hamiltonian ĤLZ(t) is Her-
mitian and belongs for all t to the finite dimensional Lie group 
SU(2) [10]. Accordingly, Sz and S± are generators of the group 
SU(2) and are eventually isomorphic with the same group, i.e., 
[S+, S−] = 2Sz, [Sz, S±] = ±S± with one Casimir operator S2. The 
quantities of central interest in (1) are the probabilities of nonadi-
abatic and adiabatic transitions. If the system is prepared at time 
t0 = −∞ in the state |↑〉 and rapidly traverses, i.e., the LZ time 
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Fig. 1. A schematic drawing of energy diagrams of two-level crossing problems in (a) the absence of bath and (c) the presence of bath. (b) Illustrates the two-level system 
coupled to a bath. In all figures, dashed lines are diabatic trajectories while solid lines are adiabatic trajectories. In (c), the straight arrow with red color indicates direct LZ 
transition described in this Letter and straight arrows of blue color indicate sequential LZ transitions. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

tLZ = 1/
√

α does not depend on Δ, the system will not feel the 
gap, and the probability to end up in the same state at asymptot-
ically large time t → +∞ is well fitted with the well-known LZ 
formula [11,12]

P↑→↑(∞) = 1 − P↑→↓(∞) = e−2πλ, (2)

where λ = Δ2/α is the dimensionless LZ parameter. Note that the 
limiting cases λ 
 1 and λ � 1 are sudden and adiabatic lim-
its of transitions, respectively. This probability appears exact and 
hold for arbitrary Δ and α. In the slow-passage limit, the LZ time 
tLZ = Δ/α, the system feels the gap, the transition probability is 
conveniently evaluated by rotating the system from its diabatic to 
adiabatic basis with the rotation matrix exp[iϑ(t)S y] (which be-
longs to SO(3) rather than SU(2) as the group SU(2) is a double 
cover for the group SO(3)) where tan 2ϑ(t) = −2Δ/αt . As this in-
vestigation is concerned, the latter case will not be discussed in 
this paper.

So far, P↑→↑ has been proven to be applicable both theo-
retically and experimentally in analyzing the experimental data 
on charge transfer, molecular collisions and spin-flip processes in 
nano-scale magnets [13]. The model (1) has been implemented 
in series of studies hallowed to charge transport in nanostruc-
tures [14,15], Bose–Einstein condensates in optical lattices [16,17]
and doublon-hole production in a Mott insulator [18]. Specifically, 
it finds a lot of applications in quantum information processing 
such as enhancing the read out of qubits via the Zener flip tun-
neling [19,20]. The associated mechanism is implemented for flux 
qubits [20,21], and may also serve for inverting spin population 
by sweeping the system through the resonance (rapid passage) 
in ultra-cold molecules [22]. On the other hand, the model (1)
has also been revisited to open the perspective deeper investiga-
tion of spectroscopic Landau–Zener–Stückelberg interferometry in 
two- [23–25] and three-level systems [26].

Furthermore, when a coupling to an environment is estab-
lished (see Fig. 1(b)), Overhauser field, which is a magnetic field 
of random amplitude and directions created by nuclear spins in-
teractions, associated with hyperfine interactions can come into 
play [27,28] and the environment is a real source of decoherence. 
Accordingly, the qubit which represents unit of quantum informa-
tion, is entangled, i.e., its quantum states cannot be expressed as 
a direct product of states of its subsystem. Also, as recently re-
ported by Whitney et al., decoherence suppresses the coherent 
oscillations of quantum superpositions of qubit states since su-
perpositions decohere into mixed states [29]. Nevertheless, at the 
same time, temperature enhances coherent oscillations at LZ tran-
sitions [29].

The basic idea we employ is that qubit may exhibit LZ tran-
sitions due to the coupling to its environment. In such a case, 
transitions are bath modes mediated as presented in Fig. 1(c). 

The generic picture of Eq. (1) is modified and has been reformu-
lated in several proposals [20,30–34]. The standard treatment of 
LZ transitions in qubits based on special functions (parabolic cylin-
der, hypergeometric functions) or the parametrization of a time-
evolution operator in terms of time-dependent Euler angles [35]
becomes complex. An exact solution to such dissipative LZ problem 
at t = +∞ and at absolute zero temperature T = 0 has been found 
in Ref. [32] by summing up an infinite series in time-dependent 
perturbation theory.

In the present Letter, we show by defining an appropriate Lie 
algebra [36,37] which is isomorphic with the group SU(2) that a 
problem of LZ transitions in a qubit coupled to its environment can 
be matched onto the frame of the traditional LZ problem (isolated 
qubit). Then, the technique/theory permits us to reproduce the 
result (exact solution) for at T = 0 (ground-state) limit obtained 
previously [32] and, by providing substantive approximations, to 
obtain generalized solutions for direct transition at finite temper-
atures indicated/schematized by the red arrow in Fig. 1(c). Thus, 
this procedure allowing back to a well-known problem with well-
known solutions is hereafter called “back to the root” throughout 
the Letter.

Since qubits exist in host lattices where they are not im-
mune to environmental effects, in Section 2 we start by con-
sidering the two most notable quantum baths as heat reservoir 
for qubit, namely, a collection of otherwise non-interacting har-
monic oscillators (bosons bath) and an ensemble of otherwise 
non-interacting two-level fermions (spins bath). The LZ transitions 
are therefore bath-mediated/assisted. Taking into account the de-
tails of the above plausible consideration, we define new bosonics 
and fermionics operators with the help of which the interacting 
problems recast the form of the original LZ problem. The Gaussian 
character of the linear qubit-bath interactions is then exploited and 
examined, and the final transition probabilities result as thermal 
averages of “back to the root solutions” over all possible realiza-
tions of the baths. To better characterize the impacts of the above 
developed and extendable method using Lie algebra, the idea is 
shown in action in Sections 3 and 4 where we also apply the 
same technique associated with the Lie algebra to a driven Jaynes–
Cummings model and an isolated double quantum-dot model, re-
spectively. Finally, a summary is given in the last section.

2. Quantum noise in the spin-1/2 Landau–Zener theory

By virtue of wider varieties of quantum phenomena, quantum 
noises are of diverse origin, thus modifying the traditional picture 
of LZ transitions for isolated qubits. The influences of the selected 
quantum noises (phonon and spin baths) on these transitions can 
be investigated with aid of our results implementing appropriate 
noise spectral density which captures information about the bath 
(Ohmic bath, super-Ohmic bath, . . .). The models considered show 
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