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1. Introduction

The Lagrangian evolution of material elements has been ex-
tensively studied in various works [1–3]. These studies were con-
nected with different problems: such as Lagrangian turbulence [5]
or passive scalar decay [2]. One of the most important results of 
these studies is the proof of the intermittency in structure func-
tions. This intermittency seems closely connected with the inter-
mittency of the developed turbulence. The results of these studies 
were summarized in [2]. But the most of theoretical papers con-
sider hydrodynamic turbulence as a Gaussian noise. In the case of 
a Gaussian stochastic process there is time symmetry t to −t .

In real uniform and isotropic turbulence energy flows from the 
scale at which it is injected, L, to the scale where it is dissipated, η. 
For intense three-dimensional turbulence, L � η, and the energy 
flows from large to small scales [1]. As a result, time symme-
try is broken, since the time reversal t to −t would also reverse 
the direction of the energy flux. Exploring the implications of this 
time asymmetry on the relative motion between fluid particles is 
of great interest.

The simplest problem in this context concerns the dispersion 
of two particles whose positions, r1(t) and r2(t), are separated by 
|r2(t) − r1(t)|. The growth of the mean n-th power of the separa-
tion, forward (t > 0) and backward in time (t < 0) is a fundamental 
question in turbulence research [4].

The aim of this paper is an introduction of a model which takes 
into account time irreversibility and an investigation of the influ-
ence of this time asymmetry on material deformation tensor. Note
that the time evolution of this tensor is a basis for the theories 
discussed above.
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2. The statement of the problem

A description of material finite deformation in a continuum is 
done using the deformation tensor defined as

Dij(X, t) = ∂xi

∂ X j

where xi(X, t) denotes the position at time t of a fluid particle 
that was at the position xi(X, t0) = Xi at the initial time t0. Dij
thus describes the variation of the position of a particle at the cur-
rent time when one slightly changes the initial position. The fluid 
particle obeys dxi/dt = ui(x, t), and differentiating this expression 
with respect to X j , one obtains the evolution equation for Dij :

dDij

dt
= Aik Dkj (1)

The value Aij is called velocity gradient tensor. Since ui(x, t) is 
the turbulent velocity Aij is a stochastic process. Many important 
properties of the developed turbulence such as geometric and sta-
tistical information, the alignment of vorticity with respect to the 
strain-rate eigenvectors, rate of deformation and shapes of fluid 
material volumes, non-Gaussian statistics, and intermittency, en-
code in the tensor Aik . In the inertial range of turbulence, similar 
properties can be described using the coarse-grained or filtered 
velocity gradient tensor. Strictly speaking to get Aij(t) you can 
differentiate coarse-grained velocity only. But according to exper-
iments [6,7] and numerical simulations [8,9], the trajectory of a 
Lagrange particle in the developed turbulence flow consists of two 
parts: regular one and trapped one into vortex filaments. But vor-
tex filament moves also as a set of Lagrangian particles. Thus if you 
consider the distance between two particles which one of them in 
a filament and another one in a regular, smooth flow (or in an-
other filament) you can at first approximation to consider smooth 
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part flow u only. Actually, small oscillations of one particle around 
vortex center do not affect on global distance growth between two 
particles.

Below we will discuss some general properties of the tensor Dij
proposing arbitrary stochastic process Aik(t).

3. Properties of Aik in stationary uniform and isotropic 
turbulence

It is naturally to suppose that stationary, uniform and isotropic 
turbulence flow is a general stochastic process defined by probabil-
ity distribution functional P [u(r, t)]. The conditions of stationarity, 
uniformity and isotropy take the form:

P
[
u(r, t)

] = P
[
u(r, t + t0)

]
, P

[
u(r, t)

] = P
[
u(r + r0, t)

]
,

P
[
u(r, t)

] = P
[

Ru(Rr, t)
]

(2)

These relations must be valid for any moment t0, position r0 and 
rotation matrix R .

Analogous one can define probability functional P A[A(t)], for 
any matrix Aij(r0, t), here r0 is some point fixed in space. The uni-
formity means that P A[A(t)] does not depend on r0. Any mean 
value of functional F [A(t)] is defined by functional integral

〈
F
[

A(t)
]〉 =

∫
ΠtdA(t) P A

[
A(t)

]
F
[

A(t)
]

The stationarity and isotropy of the flow means that

P A
[

A(t)
] = P A

[
A(t + t0)

]
, P A

[
A(t)

] = P A
[

R−1 A(t)R
]

Let us suppose below that stochastic process A(t) is statistically 
independent at different moments of time:

P A
[

A(t)
] = Πt p

(
A(t)

)
here p(A(t)) some universal function of the traceless matrix A(t).

It is common knowledge that any traceless matrix A(t) could 
be split into symmetric and antisymmetric parts:

A = B + Ω, B = 1

2

(
A + AT )

, Ω = 1

2

(
A − AT )

BT = B, Ω T = −Ω, Ωi j = εi jkωk

here ωk is a polar vector.
Because of SO(3) symmetry function p(A) depends on rota-

tional invariants only. For traceless matrix A, probability p(A) de-
pends on 5 invariants. Let us restrict our consideration by analytic 
functions p(A). In this case you can choose the following invari-
ants:

tr B2 tr B3 ω2

tr BΩ2 tr B2Ω2

It is important that ω in these invariants is a quadratic form only. 
In this case

P
(

AT ) = P (A) (3)

4. Lyapunov exponents

For further consideration let us introduce matrix Q

dQ

dt
= Q A, Q (t0) = I (4)

here I is a unit matrix. One can see from (1) that matrix Q is 
connected with D by simple relation: D = Q T (AT ). The matrix Q
is more convenient object, so we will discuss below its properties.

To examine the solution of (4), we proceed to a discrete ap-
proximation. Consider a discrete sequence of moments separated 
by �t and let Aij(t) = (An)i j be constant inside each small (n-th) 
interval. Then, for each �t , the solution to Eq. (4) is described by 
an exponent and we get

Q n = Q n−1e An�t

The matrix Q N is a multiplication of N random real unimodu-
lar matrices with the same distribution (discreet t-exponent). The 
asymptotic behavior of this object has been studied carefully and 
a number of important results have been obtained. (For a short 
summation of them, see [10].) In particular, the following theo-
rems have been proved for reasonable conditions.

Let us consider the Iwasawa decomposition of the matrix Q N :

Q = z(Q )d(Q )s(Q ), (5)

where z is an upper triangular matrix with diagonal elements 
equal to 1, d is a diagonal matrix with positive eigenvalues d =
{d1, d2, d3}, and s is an orthogonal matrix.

Theorem 1. From [11] we have that with probability 1, there exists the 
limit limN→∞ 1

N di(Q ) = λi , where λi are not random, i.e., do not de-
pend on the realization of the process Aij(t) but only on the statistical 
properties of the process, and λ1 < λ2 < λ3 , with the ordering due to the 
triangular matrix, which provides the inequality of the axes.

Theorem 2. From [12,13] we have that the distribution of ξi = 1√
N

×
(ln di(Q N ) −λi N) is asymptotically close to a Gaussian distribution and 
(weakly) converges to it as N → ∞.

Theorem 3. From [14] we have that with probability 1, z(Q N ) converges 
as N → ∞; contrary to λi , the values z∞ = z(Q ∞) are different in dif-
ferent realizations of Aij(t).

Theorem 4. From [15] we have that the values ξi(Q N ) and z(Q N) are 
asymptotically independent.

To calculate the Lyapunov exponents let us introduce matrix

Γ = Q Q T (6)

according to (5),

Γ = zd2zT

Taking into account that z is upper triangle matrix one can get:

d2
3 = Γ33, d2

1 = ((
Γ −1)

11

)−1
, d2

2 = (
Γ −1)

11(Γ33)
−1

Basing on these relations and theorems it is easy to get Lyapunov’s
exponents:

λ3 = lim
t→∞

lnΓ33

2t
, λ1 = − lim

t→∞
ln(Γ −1)11

2t
,

λ2 = −λ1 − λ3

and expressions for the Gaussian noise ξ(t):

e2
∫

ξ3(t)dt = e−2λ3td2
3 = e−2λ3tΓ33

e−2
∫

ξ1(t)dt = eλ1td2
1 = eλ1t(Γ −1)

11

These relations are exact. It is important that these limits exist
with probability 1. That is why it is possible to calculate these lim-
its by averaging over process A with probability P A :
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