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The framework of non-extensive statistical mechanics, proposed by Tsallis, has been used to describe a 
variety of systems. The non-extensive statistical mechanics is usually introduced in a formal way, thus 
simple models exhibiting some important properties described by the non-extensive statistical mechanics 
are useful to provide deeper physical insights. In this article we present a simple model, consisting of 
a one-dimensional chain of particles characterized by binary random variables, that exhibits both the 
extensivity of the generalized entropy with q < 1 and a q-Gaussian distribution in the limit of the large 
number of particles.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

There exist a number of systems featuring long-range interac-
tions, long-range memory, and anomalous diffusion, that possess 
anomalous properties in view of traditional Boltzmann–Gibbs sta-
tistical mechanics. Non-extensive statistical mechanics is intended 
to describe such systems by generalizing the Boltzmann–Gibbs 
statistics [1–3]. In general, the non-extensive statistical mechan-
ics can be applied to describe the systems that, depending on the 
initial conditions, are not ergodic in the entire phase space and 
may prefer a particular subspace which has a scale invariant ge-
ometry, a hierarchical or multifractal structure. Concepts related to 
the non-extensive statistical mechanics have found applications in 
a variety of disciplines: physics, chemistry, biology, mathematics, 
economics, and informatics [4–6].

The non-extensive statistical mechanics is based on a general-
ized entropy [1]

Sq = 1 − ∫ [p(x)]qdx

q − 1
, (1)

where p(x) is a probability density function of finding the system 
in the state characterized by the parameter x, while q is a param-
eter describing the non-extensiveness of the system. Entropy (1) is 
an extension of the Boltzmann–Gibbs entropy

SBG = −
∫

p(x) ln p(x)dx (2)
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which is recovered from Eq. (1) in the limit q → 1 [1,2]. More 
generalized entropies and distribution functions are introduced 
in Refs. [7,8]. Statistics associated to Eq. (1) has been success-
fully applied to phenomena with the scale-invariant geometry, 
like in low-dimensional dissipative and conservative maps in the 
dynamical systems [9–11], anomalous diffusion [12,13], turbulent 
flows [14], Langevin dynamics with fluctuating temperature [15,
16], spin-glasses [17], plasma [18] and to the financial systems 
[19–21].

By maximizing the entropy (1) with the constraints∫ +∞
−∞ p(x)dx = 1 and

∫ +∞
−∞ x2[p(x)]qdx∫ +∞

−∞ [p(x)]qdx
= σ 2

q , (3)

where σ 2
q is the generalized second-order moment [22–24], one 

obtains the q-Gaussian distribution density

pq(x) = C expq

(−Aqx2). (4)

Here expq(·) is the q-exponential function, defined as

expq(x) ≡ [
1 + (1 − q)x

] 1
1−q
+ , (5)

with [x]+ = x if x > 0, and [x]+ = 0 otherwise. The q-Gaussian 
distribution (or distribution very close to it) appears in many phys-
ical systems, such as cold atoms in dissipative optical lattices [25], 
dusty plasma [18], motion of hydra cells [26], defect turbulence 
[27] and seismic activity [28]. The q-Gaussian distributions are 
found to be related to long-lived quasi-stationary chaotic states 
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in multi-dimensional Hamiltonian systems (in Fermi–Pasta–Ulam 
model [29–31], in Klein–Gordon disordered lattices [32]) and in 
Galactic dynamics [33]. The q-Gaussian distribution is one of the 
most important distributions in the non-extensive statistical me-
chanics. Its importance stems from the generalized central limit 
theorems [34–36]. According to q-generalized central limit theo-
rem, q-Gaussian can result from a sum of N q-independent ran-
dom variables. The q-independence is defined in [34] through the 
q-product [37,38], and the q-generalized Fourier transform [34]. 
When q �= 1, q-independence corresponds to a global correlation 
of the N random variables. However, the rigorous definition of 
q-independence is not transparent enough in physical terms.

The non-extensive statistical mechanics is introduced in a for-
mal way, starting from the maximization of the generalized en-
tropy [1]. Therefore, simple models providing some degree of in-
tuition about non-extensive statistical mechanics can be useful for 
understanding it. There has been some effort to create such sim-
ple models. In Ref. [39] a system composed of N distinguishable 
particles, each particle characterized by a binary random variable, 
has been constructed so that the number of states with non-zero 
probability grows with the number of particles N not exponen-
tially, but as a power law. For such a system in the limit N → ∞
the ratio Sq(N)/N is finite not for the Boltzmann–Gibbs entropy 
but for the generalized entropy with some specific value of q. The 
starting point in the construction is the Leibnitz triangle, then ini-
tial probabilities are redistributed into a small number of all the 
other possible states, in such a way that the norm is preserved. 
For example, in the restricted uniform model [39] for a fixed value 
of N all nonvanishing probabilities are equal. In the proposed mod-
els that yield q �= 1 there are d + 1 non-zero probabilities and the 
value of q is given by q = 1 − 1/d.

In Refs. [40,41], the goal has been to construct simple models 
providing q-Gaussian distributions. As in [39], the models consid-
ered in [40] consist of N independent and distinguishable binary 
variables, each of them having two equally probable states. The 
models presented in [40] are strictly scale-invariant, however, they 
do not approach a q-Gaussian form when the number of particles 
N in the model increases [42]. The situation is different with the 
models presented in [41]: the two proposed models do approach 
a q-Gaussian form, the second of them does so by construction. 
All models in [40,41], except the last model of [41] are for q ≤ 1. 
The drawback of the models from Ref. [41] is that the standard 
Boltzmann–Gibbs entropy remains extensive. In addition, the mod-
els are constructed artificially and it is hard to see how they can 
be related to real physical systems.

The goal of this paper is to provide a simple model that 
achieves both the extensivity of the generalized entropy with q �= 1
and q-Gaussian distribution in the limit of the large number of 
particles. In addition, we want to construct a model that is closer 
to situations in physical systems. We expect that such a model 
can provide deeper insights into non-extensive statistical mechan-
ics than the previously constructed simple models.

The Letter is organized as follows: To highlight differences from 
our proposed model, a simple model consisting of uncorrelated bi-
nary random variables and leading to extensive Boltzmann–Gibbs 
entropy and a Gaussian distribution is presented in Section 2. In 
Section 3 we construct a simple model exhibiting the extensivity 
of the generalized entropy with q �= 1 and q-Gaussian distribution 
in the limit of the large number of particles. Section 4 summarizes 
our findings.

2. Model of uncorrelated binary random variables

At first let us consider a model consisting of N uncorrelated bi-
nary random variables. Physical implementation of such a model 
could be N particles of spin 1

2 , the projection of each spin to the 

z axis can acquire the values ± 1
2 . The microscopic configuration 

of the system can be described by a sequence of spin projections 
s1s2 . . . sN , where each si = ± 1

2 . There are W = 2N different micro-
scopic configurations. As is usual in statistical mechanics for the 
description of a microcanonical ensemble, we assign to each mi-
croscopic configuration the same probability. Thus the probability 
of each microscopic configuration is

P = 1

W
= 1

2N
. (6)

Note, that this system has a property of composability: if we have 
two spin chains with W1 and W2 microscopic configurations, then 
we can join them to form a larger system. The description of 
a larger system is just concatenation of the descriptions of each 
subsystems and the number of microscopic configurations of the 
whole system is W = W1W2. The standard Boltzmann–Gibbs en-
tropy SBG = kB ln W is extensive for this system: SBG = NkB ln 2
grows linearly with N .

Let us consider a macroscopic quantity, the total spin of the 
system

M =
N∑

i=1

si . (7)

The total spin can take values M = − N
2 , − N

2 + 1, . . . , N
2 − 1, N

2 . 
The value of M can be obtained when there are n = M + N

2 spins 
with the projection + 1

2 , the remaining spins have projection − 1
2 . 

The macroscopic configuration corresponding to the given value of 
M can be realized by 

(N
n

)
microscopic configurations, thus using 

Eq. (6) the probability of each macroscopic configuration is

P M = 1

2N

(
N

n

)
, n = M + N

2
. (8)

Here 
(N

n

)
is the binomial coefficient. Note, that the probabilities of 

macroscopic configurations are normalized:

N/2∑
M=−N/2

P M = 1. (9)

Using Eq. (8) we can calculate the average spin of the system 
〈M〉 = 0 and the standard deviation

√〈
M2

〉 − 〈M〉2 =
√

N

2
. (10)

From Eq. (10) it follows that the relative width of the distribu-
tion of the total spin M decreases with number of spins N as 1√

N
. 

When N is large then we can approximate the factorials using Stir-
ling formula

n! ≈ √
2πnnne−n (11)

and obtain a Gaussian distribution

P M ≈ 1√
π N

2

e− 2M2
N (12)

The Gaussian distribution can be obtained by maximizing the 
Boltzmann–Gibbs entropy (2) with appropriate constraints.

3. Model of correlated spins

In this section we investigate a system consisting of N corre-
lated binary random variables. Similarly as in the previous section, 
we can think of a one-dimensional spin chain consisting of N
spins. However, the spins are correlated: spins next to each other 
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