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Perceptrons are the basic computational unit of artificial neural networks, as they model the activation 
mechanism of an output neuron due to incoming signals from its neighbours. As linear classifiers, they 
play an important role in the foundations of machine learning. In the context of the emerging field 
of quantum machine learning, several attempts have been made to develop a corresponding unit using 
quantum information theory. Based on the quantum phase estimation algorithm, this paper introduces a 
quantum perceptron model imitating the step-activation function of a classical perceptron. This scheme 
requires resources in O(n) (where n is the size of the input) and promises efficient applications for more 
complex structures such as trainable quantum neural networks.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A perceptron is a mathematical model inspired by signal pro-
cessing between neural cells that are assumed to be in either of 
the two states ‘active’ or ‘resting’. It consists of n input nodes 
called neurons with values xk = {−1, 1}, k = 1, . . . , n, that feed sig-
nals into a single output neuron y (Fig. 1 left). Each input neuron 
is connected to the output neuron with a certain strength denoted 
by a weight parameter wk ∈ [−1, 1) and the input–output relation 
is governed by the activation function

y =
{

1, if
∑n

k=1 wkxk ≥ 0,

−1, else.
(1)

In other words, the net input h( �w, �x) = ∑n
k=1 wkxk decides if the 

step-function activates the output neuron.1 With their introduc-
tion by Rosenblatt in 1958 [1], perceptrons were a milestone in 
both the fields of neuroscience and artificial intelligence. Just like 
biological neural networks, perceptrons can learn an input–output 
function from examples by subsequently initialising x1, . . . , xn with 
a number of example inputs, comparing the resulting outputs with 
the target outputs and adjusting the weights accordingly [2]. The 
high expectations of their potential for image classification tasks 
were disappointed when a study by Minsky and Papert in 1969 
[3] revealed that perceptrons can only classify linearly separable 
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1 Another frequent class of perceptrons use values xk = [−1, 1], k = 1, . . . , n, and 
the logistic sigmoid activation function y = sgm(

∑m
k=1 wkxk).

functions, i.e. there has to be a hyperplane in phase space that di-
vides the input vectors according to their respective output (Fig. 2). 
An example for an important non-separable function is the XOR
function. The combination of several layers of perceptrons to ar-
tificial neural networks (also called multi-layer perceptrons, see 
Fig. 1 right) later in the 1980s elegantly overcame this shortfall, 
and neural networks are up to today an exciting field of research 
with growing applications in the IT industry.2

Since two decades, quantum information theory [5,6] offers a 
fruitful extension to computer science by investigating how quan-
tum systems and their specific laws of nature can be exploited in 
order to process information efficiently [7,8]. Recent efforts inves-
tigate methods of artificial intelligence and machine learning from 
a quantum computational perspective, including the ‘quest for a 
quantum neural network’ [9]. Some approaches try to find a quan-
tum equivalent for a perceptron, hoping to construct the build-
ing block for a more complex quantum neural network [10–12]. 
A relatively influential proposal to introduce a quantum percep-
tron is Altaisky’s [10] direct translation of Eq. (1) into the for-
malism of quantum physics, namely |y〉 = F̂

∑m
k=1 ŵk|xk〉, where 

the neurons y, x1, . . . , xn are replaced by qubits |y〉, |x1〉, . . . , |xn〉
and the weights wk become unitary operators ŵk . The step ac-
tivation function is replaced by another unitary operator F̂ . Un-
fortunately, this proposal has not been extended to a full neural 
network model. A significant challenge is for example the learning 
procedure, since the suggested rule inspired by classical learning, 

2 Consider for example the latest developments in Google’s image recognition al-
gorithms [4].
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Fig. 1. (Colour online.) Left: Illustration of a perceptron model with input neurons 
xk = {−1, 1}, weights wk ∈ [−1, 1), k = 1, . . . , n, and output neuron y ∈ {−1, 1}. 
Right: Perceptrons are the basic unit of artificial neural networks (here a feed-
forward neural network). The network has an input layer, one hidden layer and an 
output layer, which get updated in chronological order. Every node or neuron com-
putes its value according to the perceptron activation function Eq (1), so that the 
network maps an input (x1, . . . , x4) to an output (o1, . . . , o4).

Fig. 2. A dataset is linearly separable if it can be divided regarding its outputs by a 
hyperplane in phase space.

ŵ[t+1]
k = ŵ[t]

k + η(|d〉 − |y[t]〉)〈xk| with target output |d〉 and the 
learning rate η ∈ [0, 1], does not maintain the unitarity condition 
for the operators ŵk . Other authors who pick up Altaisky’s idea do 
not provide a solution to this severe violation of quantum theory 
[11,13,14] (or propose an according open quantum systems frame-
work, in which the operators still have to remain completely posi-
tive and non-trace-increasing). Further models of quantum percep-
trons can be found in the literature on quantum neural networks, 
but often remain vague in terms of the actual implementations 
[15,16], or do not apply quantum mechanics in a rigorous way 
[17,18]. An interesting exception is Elizabeth Behrman’s work in-
troducing a perceptron as the time evolution of a single quantum 
object [19], as well as Ricks and Ventura’s ideas towards a super-
position based learning procedure based on Grover’s search algo-
rithm [20].

This contribution introduces a unitary quantum circuit that 
with only a small number of extra resources simulates the non-
linear input–output function of a classical perceptron as given in 
Eq. (1). This quantum perceptron model has a high probability 
of reproducing the classical result upon measurement and can 
therefore be used as a classification device in quantum learning 
algorithms. The computational resources needed are comparable 
with the classical model, but the advantage lies in the fact that a 
quantum perceptron can process the entire learning set as a su-
perposition, opening up new strategies for efficient learning. It can 
thus be seen as a building block of a more complex quantum neu-
ral network that harvests the advantages of quantum information 
processing.

2. The quantum perceptron algorithm

The quantum perceptron circuit is based on the idea of writ-
ing the normalised net input h̄( �w, �x) = ϕ ∈ [0, 1) into the phase 
of a quantum state |x1, . . . , xn〉, and applying the phase estima-
tion algorithm with a precision of τ . This procedure will return a 
quantum state | J1, . . . , Jτ 〉 which is the binary fraction represen-
tation of θ (or, equivalently, the binary integer representation of 
j in θ = j

2τ ), which is in turn a good approximation for ϕ . More 

Fig. 3. Quantum circuit for the quantum perceptron model. See also [5].

precisely, the output encodes the phase via θ = J1
1
2 + . . . + Jτ

1
2τ

(or j = J12τ−1 + . . . + Jτ 20) [5]. The first digit of the output state 
of the quantum phase estimation algorithm, J1, thus indicates if θ
(and therefore with a good chance also ϕ) is bigger than 1

2 . The 
quantum perceptron consequently maps (�x, �w) → J1, which as we 
will see below reproduces the step activation function of a classical 
perceptron with a high probability.

To give a more detailed impression of the quantum per-
ceptron circuit (see also Fig. 3), we assume an initial state 
|0, . . . , 0〉|x1, . . . , xn〉 = |0, . . . , 0〉|ψ0〉 composed of a register of τ
qubits in state 0 as well as an input register |ψ0〉 with n qubits 
encoding the binary states of the input neurons (note that in 
the quantum model, the −1 value is represented by a 0 state). 
Hadamard transformations on the τ zeroes in the first register lead 
to the superposition 1√

2τ

∑2τ −1
j=0 | J 〉|x1, . . . , xn〉, in which J is the 

binary representation of the integer j, and | J 〉 = | J1, . . . , Jτ 〉. We 
apply an oracle O that writes j copies of a unitary transformation 
parameterised with the weights in front of the input register,

| J 〉|ψ0〉 O−→ | J 〉U ( �w) j|ψ0〉. (2)

The unitary U writes the normalised input ϕ into the phase of 
the quantum state. This can be done using the decomposition into 
single qubit operators U ( �w) = Un(wn) . . . U2(w2)U1(w1)U0 with 
each

Uk(wk) =
(

e−2π iwk�φ 0
0 e2π iwk�φ

)
,

working on the input register’s qubit xk , and �φ = 1
2n . U0 adds a 

global phase of π i so that the resulting phase of state
| J 〉|x1, . . . , xn〉 is given by exp(2π i(�φh( �w, �x) + 0.5) = exp(2π iϕ). 
For learning algorithms it might be useful to work with param-
eters represented in an additional register of qubits instead of 
parametrised unitaries, and below we will give an according vari-
ation of the quantum perceptron algorithm.

The next step is to apply the inverse quantum Fourier transform 
[21,5], QFT−1, resulting in

1√
2τ

2τ −1∑
j=0

exp2π i jϕ | J 〉|ψ0〉

QFT−1−−−→
2τ −1∑

j=0

(
1

2τ

2τ −1∑
k=0

exp2π ik(ϕ− j
2τ )

)
| J 〉.

In case the phase can be exactly expressed as ϕ = j
2τ for an in-

teger j, the amplitude of all states except from | J 〉 is zero and 
the algorithm simply results in | J 〉. For cases ϕ 
= j

2τ , it can be 
shown that in order to obtain ϕ accurately up to m bits of pre-
cision with a success probability of 1 − ε , one has to choose 
τ = m + �log (2 + 1

2ε )� [5]. Since we are only interested in the 
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