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A new phenomenon – the amplification of short pulse during its passing through a thin layer of unstable 
plasma with anisotropic bi-Maxwellian electron velocity distribution is described.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Action of intense laser radiation on the atoms of matter leads 
to the formation of nonequilibrium plasma. Usually, such plasma 
has anisotropic velocity distribution of photoelectrons (see, e.g., 
[1–5]). Electromagnetic properties of anisotropic plasma distin-
guish from those inherent to plasma with an isotropic electron 
distribution function, as the constitutive equations are modified 
due to magnetic field effect on the electron kinetics. As a result, 
in particular, the dense photoionized plasma has unusual optical 
properties [6–8]. This effect leads also to amplification of reflected 
pulse [9–11] due to Weibel instability development [12]. The the-
ory of another new phenomenon – the amplification of short 
pulse passing through the layer of photoionized plasma is given in 
the present communication. Below transmission of a short pulse 
through a thin layer of plasma with anisotropic bi-Maxwellian 
electron velocity distribution is considered. It is shown that if pulse 
duration is several times greater than inverse Weibel instability 
growth rate the field strength of transmitted signal is greater than 
the field strength of incident pulse by more than an order of mag-
nitude.

2. Basic equations

Let us consider part of space 0 < z < L occupied by homoge-
neous plasma layer with anisotropic electron velocity distribution 
of the form

* Corresponding author.
E-mail addresses: vagin@sci.lebedev.ru (K.Yu. Vagin), uryupin@sci.lebedev.ru

(S.A. Uryupin).

fa(v) = ne

(2π)3/2 v2
T⊥ v T‖

exp

[
− v2

x + v2
y

2v2
T⊥

− v2
z

2v2
T‖

]
, (1)

where ne is the electron density, v T‖ and v T⊥ are velocities charac-
terizing the average energy of electron motion along the anisotropy 
axis 0z and across it. Anisotropic distribution of the form (1) is 
nonequilibrium and exists during a limited time interval. Electron 
collisions lead to the isotropization of distribution function (1). In 
addition, plasma with electron velocity distribution of the form (1)
is unstable with respect to Weibel instability development, which 
also leads to the modification of the initial distribution function. 
Therefore, using distribution (1), we consider time intervals that 
are less than both the time of function (1) isotropization due to 
electron collisions, and the time of its modification due to Weibel 
instability development. The external field action time is also con-
sidered to be less than time intervals specified above. This means 
that external pulse is sufficiently short.

Let the field of the form
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starts to act on the surface z = 0 at the moment t = 0. Here EL =
{E L, 0, 0}, η(t − z/c) is Heaviside unit-step function, c is the speed 
of light, ω0 is the carrier frequency. Expression (2) is used taking 
into account the above mentioned restrictions on the pulse expo-
sure time. The field (2) partially reflected backwards, partially pen-
etrates into plasma and passes through the layer. The electron dis-
tribution (1) is symmetric with respect to the rotation around 0z
axis. In this case electromagnetic field satisfied Maxwell equations 
in vacuum passed through the plasma layer can be represented 
as outgoing plane wave Et(τ ) = {Et(τ ), 0, 0}, Bt(τ ) = {0, Et(τ ), 0}, 
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where τ = t − (z − L)/c and z > L. The field of wave, reflected into 
the region z < 0, has similar form Er(τ

′) = {Er(τ
′), 0, 0}, Br(τ

′) =
{0, −Er(τ

′), 0}, where τ ′ = t + z/c. Penetrating into plasma the 
field (2) leads to perturbation of initial electron distribution func-
tion (1) and to excitation of electric E(z, t) = {E(z, t), 0, 0} and 
magnetic B(z, t) = {0, B(z, t), 0} fields. In addition to these fields 
there are spontaneous electromagnetic fields caused by thermal 
fluctuations of charge and current densities in plasma. The in-
crease of such fields due to Weibel instability development is ac-
companied by the generation of electromagnetic radiation from 
nonequilibrium plasma [13]. Below we will be interested in the 
response of a nonequilibrium plasma to the field (2) action, assum-
ing that induced fields are greater then the ones caused by thermal 
fluctuations. Then we assume that at time moment t = 0 the per-
turbations of all quantities in plasma are approximately equal to 
zero. At the same time, considering that external field (2) impact 
is weak, we will use the linear approximation in the amplitude E L . 
Under these assumptions, further consideration is based on the 
self-consistent system of Maxwell equations for the electric and 
magnetic fields in plasma and the linearized collisionless kinetic 
equation for the perturbation of electron distribution function (1).

We use the Laplace transform to solve the initial value problem, 
when original function Φ(t) and its image Φ(ω) are related by 
Φ(ω) = ∫ +∞

0 dt eiωtΦ(t) and Φ(t) = ∫ +∞+iΔ
−∞+iΔ (dω/2π) e−iωtΦ(ω), 

where Δ > γ > 0 and γ is the exponential growth rate of function 
Φ(t). Solving the kinetic equation for electron distribution function 
perturbation we use simple boundary condition of specular reflec-
tion of electrons by plasma boundaries. Finding the perturbation 
of electron distribution function and the nonequilibrium current in 
plasma, after the exclusion of magnetic field from the original sys-
tem of equations, we obtain integro-differential equation for the 
Laplace transform of the electric field in plasma, 0 < z < L,[
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where ωL is electron Langmuir frequency and the notations k2
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are used. Eq. (3) is supplemented by the boundary conditions of 
continuity of tangential component of electric field and its deriva-
tive on the boundaries of plasma layer.

We would like to emphasize the qualitative difference between 
new formulation of the problem of field transmission through the 
layer and one used earlier in Refs. [14,15]. In [14,15] the stationary 
boundary value problem for electromagnetic field with fixed fre-
quency passing through a layer of stable plasma was considered. 
Because in the new formulation of the problem plasma ground 
state is nonequilibrium and exists in limited time interval, in con-
trast to [14,15], the initial and boundary value problems are solved 
simultaneously.

Continuing the function E(z, ω) into the region −L < z < 0 in 
an even manner, we find solution of Eq. (3) as Fourier series ex-
pansion over spatial harmonics cos(knz), where kn ≡ kn(L) = πn/L. 
Using the explicit form of solutions for field outside the layer and 

the boundary conditions at z = 0 and z = L, after the inverse 
Laplace transform of electric field passing through the layer, we 
have
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where Ei(ω) = E Lω0/(ω
2
0 − ω2) is Laplace transform of the exter-

nal field (2) at z = 0. Expression (5) includes complex transmission 
coefficient
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− 1
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, (6)

expressed in terms of the functions
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where we use the notations
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Here w(s) is the function related to the error function (see [16], 
p. 297, formula (7.1.4)).

Field (5) that is passing through a layer is nonzero at time 
moments t > L/c in the space L < z < c t behind the layer. As 
shown in [13] at time moments t > 2L/c, the asymptotic form of 
field (5) is determined by the contributions related to the singu-
larities of the integrand in (5). The poles of Ei(ω) in the points 
ω = ±ω0 result in nonincreasing in time contributions to the field, 
that are similar in structure to the external field (2). The influence 
of medium on the transmitted signal is due to the singularities of 
the function T (ω, L), which are determined by the equations

1 + Z−1± (ω, L) = 0. (9)

Note also that in the absence of an external pulse (2) for complex 
frequencies satisfying one of Eq. (9), in plasma may exist radiated 
outwards electromagnetic fields of the same configuration as con-
sidered above. These fields correspond to the growing transverse 
modes of the anisotropic plasma layer that are radiating outwards.

3. Amplification of the field passing through the layer

In the case of anisotropic distribution function (1) for a given 
thickness L in the low frequency region |ω| 
 ωL Eqs. (9) can have 
denumerable set of imaginary solutions ω = iγn(L), n = 1, 2, . . .; 
γn(L) > 0. The results of numerical solution of Eqs. (9) are given 
in Fig. 1 where the dependence of ratio γn(L)/γ∗ on the dimen-
sionless layer thickness L/δ is plotted. The curves in Fig. 1 are 
obtained for v T⊥/c = 0.03 and plasma anisotropy degree value 
v T⊥/v T‖ = 10. Here δ = πc/ωL , and γ∗ ≡ γ∗(v T⊥/v T‖ ) is the max-
imum Weibel instability growth rate value in spatially infinite 
plasma with anisotropic velocity distribution of the form (1) for 
a given degree of anisotropy v T⊥/v T‖ > 1 [17]. Thick solid, dashed 
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