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The diffusion coefficient of a polymer in an array of obstacles
is a non-monotonic function of the degree of disorder in the medium
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Abstract

Using Monte Carlo simulations, we have found that there is a surprising non-monotonic dependence of a polymer’s diffusion coefficient upon the
degree of disorder of the surrounding environment. Starting with a two-dimensional periodic lattice of obstacles, we randomly displace obstacles
to create a quenched gel system with a tunable degree of disorder. Very small displacements increase the diffusion coefficient of polymers since
they increase the width of the tube through which the polymer chains reptate. As we displace the obstacles further, however, entropic trapping is
observed and the diffusion coefficient of the polymer decreases dramatically. This is a striking example of the delicate balance between entropic
and frictional effects for a polymer diffusing in a dense system.
© 2007 Elsevier B.V. All rights reserved.
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Entropic trapping (ET) of polymer chains in random gels or
porous systems is a concept that was originally proposed by
Muthukumar and Baumgartner in a seminal 1987 paper [1]. In
ET, the spatial dependence of a chain’s conformational entropy
(or free energy) is equivalent to an external potential that tends
to trap the chain in those regions of the gel where its entropy
is maximized. Dense gel regions lower the conformational en-
tropy of the chain, and are thus avoided. Empty regions, on the
other hand, maximize the entropy and act as potential wells that
trap the chain for extended periods of time. Long-time diffusion
is thus limited by the time it takes to jump between large pores
separated by dense regions (the latter then act as potential bar-
riers). Evidence for ET has been reported, for example, in the
case of DNA gel electrophoresis [2–4]. The concept of ET has
also been used to create novel microfluidic devices [5,6]. Re-
cently it has been suggested that ET might also be involved in
binding in some biological systems [7].
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We previously demonstrated that ET sometimes leads to sur-
prising and counter-intuitive effects. Using the bond-fluctuation
Monte Carlo algorithm [8,9], we examined a polymer chain dif-
fusing in a two-dimensional array of periodically distributed
obstacles. The dependence of the diffusion coefficient D(C)

on the fraction 1 − C of obstacles removed from the array was
non-monotonic. The limiting cases were fully consistent with
the Rouse (C = 0) and reptation (C = 1) models. As 1 − C in-
creases (more obstacles are removed), one intuitively expects
a monotonic increase of D(C) since the removal of obstacles
should obviously make it easier for the chain to diffuse. How-
ever, it was not the case for this model system. Starting with
a perfectly periodic lattice of obstacles, removing a small per-
centage of the obstacles actually caused a considerable decrease
in the diffusion coefficient [8,9]. This is due to entropic trap-
ping in the voids left after obstacles are removed. These local
entropic traps acted as potential wells, reducing the diffusion
coefficient of polymers. The strongest trapping occurred when
only 1 − C = 10% of the obstacles were removed [9]. As more
obstacles were removed, the traps became stronger, but also got
larger, reducing the distance between traps. Eventually the traps
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all joined and they were no longer isolated: A percolating path-
way was created and the diffusion coefficient rapidly increased
towards the value D(0) expected for a free chain.

This interesting non-monotonic transition between the rep-
tation and Rouse limits is the non-trivial result of ET. However,
one of the weaknesses of the previous study was that removing
obstacles simultaneously increased both the degree of disorder
in the array of obstacles and the free volume available to the
chain. We now report a study of a similar system where we
keep the number of obstacles constant and increase the amount
of disorder by randomly moving the obstacles in the vicinity of
their initial position. Due to the nature of the model we have a
small decrease in the free volume available due to the creation
of lakes (empty sites completely surrounded by obstacles), as
well as channels which are too narrow (only one site wide) to
allow a monomer to pass through. However, the change in the
free volume is always less than seven percent. Thus, this model
reduces the effect of changes in the obstacle density (concen-
tration of the gel) and allows us a new look at the transition
from a periodic distribution of obstacles (where polymer repta-
tion is known to occur [10]) to a totally random distribution of
obstacles (where ET is expected to dominate dynamics [11]).

The model used in our simulations is based on the two-
dimensional Bond-Fluctuation Monte Carlo algorithm [12] (see
Fig. 1) on a square lattice (whose mesh size is a = 1). This is the
same model as used in previous simulation of entropic trapping
done in our group, and has been described in detail in previous
papers on this topic [9].

A polymer chain consists of N monomers (represented as
one square plaquette on the lattice) which are linked by bonds
which can vary between 2a and

√
13a in length (this yields 36

possible bond vectors linking adjacent monomers). This, com-
bined with the fact that two monomers cannot occupy the same

Fig. 1. A simple schematic representation of our simulation model. The grey
boxes represent obstacles while the black boxes are monomers. The dotted lines
show the bonds between adjacent monomers. The obstacles initially form a
periodic array (here with a periodicity of 4). In this example, only the central
obstacle was moved from its initial position in order to add some disorder in
the system.

site on the lattice or touch one another, prevents bond cross-
ing. A move consists of attempting to move a random monomer
one site in the ±x, or ±y direction. Monomer moves are ac-
cepted as long as the new bond lengths remain in the range
[2a,

√
13a] and there is no monomer or obstacle blocking the

way. One Monte Carlo Step (MCS) consists of N such moves.
The polymer is only added after the system of obstacles is prop-
erly prepared, so as to ensure that its presence does not affect
the final obstacle layout.

Our obstacles are also represented as square plaquettes on
the lattice that cannot overlap or touch one another. First, the
obstacles are placed periodically to form a regular array with
a simple square symmetry of periodicity λ � 4a. We make the
lattice large enough (at least 5000 sites by 5000 sites, with peri-
odic boundary conditions) that finite size effects are negligible.

We then add a tunable degree of randomness to the system
by allowing each obstacle to move in the harmonic potential

(1)U(ri) = 1

2
K(�ri − �roi)

2

about its initial position �roi , where K is the spring constant
that controls the amount of disorder in the system. When K →
∞, the obstacles do not move from their initial location and
therefore remain periodic in space. The other extreme is when
K → 0: In this limit, the position of the obstacles take on a to-
tally random (or disordered) distribution. Values of K between
these two extremes will result in an intermediate amount of dis-
order in our obstacle distribution.

We displace the obstacles using monomer-like random
moves that we accept, if there is no other obstacle blocking
the move, with a probability given by a standard Metropolis

test: P = exp{−(
U(�rnew)−U(�rcurrent)

kBT
)}, where kB is Boltzmann’s

constant and T is the temperature. The obstacles are prepared
(or warmed up) for a total of 250 attempted moves per obsta-
cle. The equilibrium distribution (neglecting volume exclusion)
of the obstacles about their initial positions �roi is given by the
Boltzmann distribution

(2)ρ(r) ∼ exp

(
− Kr2

2kBT

)
,

where r2 ≡ (�ri − �roi)
2. Due to the finite number of attempted

moves and volume exclusion effects between obstacles, our
data does not fit this distribution perfectly, although it is very
close (the K = 0 case is obviously special). Once we have com-
pleted this warm-up period, we quench the obstacles in place
for the rest of the simulation. An approximate value (neglect-
ing volume exclusion and the finite warm up time) for the root
mean square obstacle displacement can easily be found by eval-
uating the simple Boltzmann sum

(3)rrms = 〈
r2〉1/2 ≈

√√√√√√
∑

ij r2
ij exp

(− Kr2
ij

2kBT

)
∑

ij exp
(− Kr2

ij

2kBT

) .

The difference between the values found using Eq. (3) and our
simulations are tabulated in Table 1.
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