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Abstract

The Fermi accelerator model is studied in the framework of inelastic collisions. The dynamics of this problem is obtained by use of a two-
dimensional nonlinear area-contracting map. We consider that the collisions of the particle with both periodically time varying and fixed walls are
inelastic. We have shown that the dissipation destroys the mixed phase space structure of the nondissipative case and in special, we have obtained
and characterized in this problem a family of two damping coefficients for which a boundary crisis occurs.

© 2006 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of the one-dimensional Fermi accelerator
model has intrigued physicists over a long time. Since the sem-
inal paper of Enrico Fermi [1], different versions of the theo-
retical model and even experiments have been considered and
proposed to include external fields, inelastic collisions, damp-
ing coefficients and also quantum effects [2—10].

A complex hierarchy of behaviors is present for the con-
servative version of a classical particle confined between two
rigid walls, in which one of them is fixed and the other one
moves periodically in time (this version is also referred to as
the Fermi—Ulam model (FUM)). The phase space of the FUM
shows for high energy, a set of invariant spanning curves while
for intermediate and low energy domains, a chaotic sea limited
by an invariant spanning curve, surrounds a set of Kolmogorov—
Arnol’d—Moser (KAM) islands. The presence of the invariant
spanning curves limit the energy gain of the bouncing particle.
They also imply that the chaotic low energy region is described
using scaling arguments for both the average velocity as well
as the variance of the average velocity [11] (see also Refs. [12,
13] for recent results and scaling analysis on the FUM). An al-
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ternative version of the model in the presence of gravitational
field, also called as bouncer [14], consists of a classical par-
ticle bouncing in a vertical moving platform under a constant
gravitational field. The most important property of the bouncer
model opposite to the FUM, is that it shows, for specific com-
binations of control parameters and initial conditions, the phe-
nomenon of unlimited energy growth. This apparent contradic-
tory result was latter discussed and explained by Lichtenberg
and Lieberman [15]. Moreover, recently a hybrid version of
the FUM and bouncer model was studied [16]. The model con-
siders the motion of a classical particle in a gravitational field,
with the motion confined between two rigid walls, one of which
is fixed while the other one moves periodically in time. The
model recovers the FUM results in the limit of zero external
field and shows properties of the bouncer model for intense
gravitational field. Besides, within a certain range of control
parameters, properties that are individually characteristic of ei-
ther the Fermi—Ulam or bouncer model can come together and
coexist in the hybrid version of the model.

Considering the introduction of dissipation, an immediate
consequence is that the dynamics is drastically affected. In
special, the property of area-preservation is broken and it is
possible to observe different asymptotic behaviors including
transients [17], attracting fixed points and locking [18], chaotic
attractors [19] and even crisis events as the damping coefficient
is varied [20].
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In this Letter we study a dissipative version of the FUM.
It consists of a classical particle confined between two rigid
walls where one wall is fixed and the other one moves peri-
odically in time. We assume that the particle suffers inelastic
collisions with both walls. For the fixed wall, we introduce a
restitution coefficient « € [0, 1] while for the periodically time
varying wall we consider g € [0, 1]. The limit « = 8 =1 re-
covers all the results for the nondissipative case. The parameter
a = 0 corresponds to the completely inelastic case where only
a single collision with the fixed wall is enough to terminate all
the dynamics. On the other hand, if 8 = 0, which is equivalent
to the particle suffering a completely inelastic collision with the
moving wall, the phase space present a region of locking (see
Ref. [18] for specific examples) and the moving wall re-launch
the particle in the system with the maximum moving wall’s
velocity. We will consider values for both « and g inside the in-
terval (0, 1). We describe the dynamics via a two-dimensional
nonlinear area-contracting map with three effective control pa-
rameters namely (€, «, 8). We show that the introduction of dis-
sipation destroys the mixed phase space structure and in special,
we obtain a family of control parameters « and 8 for which a
boundary crisis occurs. The occurrence of crisis can have great
implications in problems of controlling chaos. For example in
an experiment, the inelastic collisions cannot be neglected since
they are present in almost all kinds of surfaces. The moving wall
can be simulated via a platform of a loudspeaker and the resti-
tution coefficient is given according to the surface of the fixed
wall as well as on its constitution. Basically, controlling chaos
in this problem consists in stabilizing a chaotic behavior into a
regular dynamics (periodic or quasi-periodic) by changing the
restitution coefficient and consequently, leading the system to
experience a boundary crisis. Our results give support on the
fact that it is possible to find an effective control parameter that
allow to control the dynamics via a boundary crisis. The effec-
tive parameter, obtained from two restitution coefficient define
a family of boundary crisis. It is also worth to stress that, from
the experimental point of view, sometimes it is interesting to
avoid events of crisis. Thus our results do not only allow con-
trolling chaos via a boundary crisis as well as to avoid undesired
bursts of crisis.

This Letter is organized as follows. In Section 2 we construct
the nonlinear mapping, obtain analytically the fixed points ex-
pressions, discuss the boundary crisis and the effects of the tran-
sient. Some numerical results on the FUM are also presented in
this section. Finally, our conclusions are shown in Section 3.

2. The model and numerical results

The model consists of a classical particle confined between
two rigid walls. One of them is fixed at x = [ while the other
one moves in time according to x,,(¢) = ¢ cos(wt) where ¢ de-
notes the amplitude of oscillation and w is the frequency of the
moving wall. Moreover, the particle does not suffers influence
of gravitational field or any other field. We assume that the col-
lisions with both walls are inelastic.

The dynamics of the system is given in terms of a dis-
crete map for the velocity (v,) and time (#,) variables, where

n denotes the nth collision with the moving wall. For the con-
struction of the mapping, it is useful to define dimensionless
variables. Firstly, we measure the time in terms of the number
of oscillations of the moving wall; we thus define ¢, = wt,.
The new velocity of the particle is V,, = v,/(wl) and the am-
plitude of the moving wall is given by € = ¢/[. Starting with
an initial condition (V,,, ¢,,) with initial position of the particle
given by x,(¢,) = € cos(¢,), the dynamics is evolved by a map
T which gives the pair (V,,4+1, ¢n+1) in the (n + 1)th collision
with the moving wall. The map is written as

T- Vig1 =V, — (1 + B)esin(dn11),
' Gui1 = dn + AT, mod(2m),

where the corresponding expressions for both V,* and AT, de-
pend on what kind of collision with the moving wall occurs,
namely: (i) multiple collisions and; (ii) single collisions. The
multiple collisions are such that, after the particle enters in the
collision zone, x € [—¢, €] and hits the moving wall, before
it leaves the collision zone, the particle suffers a second and
multiple collision. It is also possible for the particle, depending
on the combination of V,, and ¢, suffers many other multi-
ple collisions. In this case, the expressions for both V,* and
AT, are given by V' = —BV, and AT, = ¢.. The numerical
value of ¢, is obtained as the smallest solution of the equation
G(¢.) = 0 with ¢, € (0, 27]. Let us now discuss the origin of
the function G(¢.) and its physical implications. Between two
collisions with the moving wall, the particle travels with a con-
stant velocity since there is no gradient of potential between
such collisions. Thus, the position of the particle is given by a
linear equation in time. Besides, the cosinusoidal motion of the
moving wall turns out impossible to find an analytical expres-
sion of the instant of the impact. Therefore, the function G(¢.)
is obtained as an attempt to account the condition that the posi-
tion of the particle is the same as the position of the moving wall
at the instant of the impact. In this sense, the function G(¢.) is
written as

G(pc) =€ cos(py + ¢c) — € cos(@y) — Vyde. ()

If the function G(¢.) does not have a root in the interval
¢ € (0,27], we can conclude that the particle leaves the col-
lision zone and a multiple collision no longer happens. The
mapping describing the multiple collisions has the determinant
of the Jacobian matrix given by

V, + €sin(¢y,) ]
Vagt +esin(gni1) |

For successive collisions, the map is measure preserving only
for the case of 8 = 1. For this case, it implies that the measure
du=[V + esin(¢)]dV d¢ is preserved.

Considering now the case of single collisions, the corre-
sponding expressions used in the mapping (1) are V) = Ba'V,,
and AT, = ¢ + ¢ + ¢, where the auxiliary terms are given
by ¢, = (1 —ecos(¢y))/ V, and ¢y = (1 —€) /aV,,. The expres-
sion of ¢, denotes the time that the particle spends traveling to
the right-hand side until it hits the fixed wall. The particle thus
suffers an inelastic collision and is reflected backwards with
velocity —a'V,,. The term ¢; denotes the time that the particle

ey

det(J) = ,32[ 3)
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