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Abstract

We emulate the ground state of a Bose–Einstein condensate in a time-dependent isotropic harmonic trap by constructing analytic simulacra
of a transformed wavefunction in the regions around the origin and far from the origin. This transformed wavefunction is obtained through a
pseudoconformal transformation and is a function of new spatial and temporal variables, while the simulacra are generalisations of asymptotic
solutions of the nonlinear Schrödinger equation and they are matched by requiring continuity not only of the wavefunction and of its slope,
but of its curvature as well. The resulting piecewise analytic simulacra coincide almost perfectly with the numerically obtained solutions of the
time-dependent nonlinear Schrödinger equation and constitute an easy and accurate analytic method for describing fully the condensate ground
state.
© 2006 Elsevier B.V. All rights reserved.
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The discovery of Bose–Einstein condensates has created an
increased interest in the nonlinear Schrödinger equation. In-
deed, the Gross–Pitaevskii (GP) equation [1], a highly success-
ful mean field approximation that yields the macroscopic wave-
function for the gaseous Bose–Einstein condensates, is just a
cubic nonlinear Schrödinger equation in a trapping potential.
This trapping potential term has opened up new theoretical and
mathematical investigations. Most of these investigations have
focussed on harmonic traps, which do not give exact analytic
solutions, and have therefore consisted of numerical studies,
involving elaborate computations [2]. The difficulty of the prob-
lem is compounded when the trap acquires an arbitrary time-
dependence.

The evolution of the condensate in a time-dependent trap
has been addressed in many different ways. There are works
based on scaling arguments and the Thomas–Fermi approxi-
mation [3], numerical solutions that focus usually on watching
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the time evolution of a suitable initial condition [4], as well as
variational methods [5]. These latter treatments give the cor-
rect qualitative behavior of the condensates, but not necessarily
good quantitative agreement with the results of the numerical
calculations. It would be desirable though, in many instances,
to be able to obtain accurate, though approximate, analytic so-
lutions for Bose–Einstein condensates. Such solutions would
provide a simple quantitative tool for the analysis of experi-
mental data for trapped condensed gases.

There is, indeed, a method for finding excellent analytic ap-
proximate solutions to the nonlinear Schrödinger equation in a
time-independent harmonic trapping potential [6]. This method
leads to simple analytic expressions and is most easily used
when finding the condensate ground state. It can be generalised
though to higher states and to various potentials. Its basic strat-
egy is to construct piecewise analytic simulacra of the solutions
of the GP equation. In the case of the ground state, for example,
one will be looking for analytic simulacra of the solutions of
this equation in two regions: one around the origin and one far
from the origin. These simulacra will be constructed as gener-
alisations of the asymptotic solutions of the GP equation in the
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two regions mentioned. The two simulacra will then be joined,
requiring that the wavefunction and its slope be continuous at
the junction, and that the curvatures of the joined pieces also
equal each other there. Indeed, if the simulacrum is a very good
one, then its curvature must be continuous everywhere, since
this is the case for the exact ground state.

The solution obtained by this emulation for the ground state
in a time-independent harmonic trap is indeed an excellent ap-
proximation to the solution obtained numerically, for any value
of the number of atoms, large or small [6]. The simple ana-
lytic expressions for the wavefunction are very useful, because
they provide a simple quantitative tool for the analysis of ex-
perimental data for trapped condensed gases, without relying
on complex and extensive calculations.

In this Letter we shall generalize the work of Ref. [6] to the
case of a harmonic trap that has an arbitrary time-dependence.
We shall find that the analytic simulacra give again the correct
behaviour with great accuracy, even though the analytic expres-
sions used are very simple.

Let us begin with the Gross–Pitaevskii equation in a time-
dependent isotropic harmonic trap:

(1)− h̄2

2m
∇2Ψ + 1

2
mω2(t)r2Ψ + g0g(t)|Ψ |2nΨ = ih̄

∂Ψ

∂t
,

where g0 and g(t) are positive (repulsive two-body interactions)
with g(0) = 1. For the sake of generality, we have adopted a
time-dependent nonlinearity [7]. The variation of the nonlinear-
ity can be achieved if we modulate the atomic scattering length
by the Feshbach resonance technique. We note that the typi-
cal spatial scale

√
h̄/2mω for the ground state of the trap is

of the order of a few microns, with ω being around 50 s−1.
The corresponding scattering length a = mg0/4πh̄2 for 87Rb
is 5.77 nm, while it is 2.75 nm for the case of 23Na. There are
typically a few thousand atoms in the condensate. As a result
of the repulsive two-body forces, the size of the condensate can
be substantially larger than the scale

√
h̄/2mω. For example,

in the case of 80000 23Na atoms the size of the condensate is
around 20 microns [8].

We shall define the dimensionless quantities Ω(τ) =
ω(t)/ω(0) (with Ω(0) = 1), x = r

√
2mω(0)/h̄, τ = ω(0)t and

φ(x, τ ) = Ψ (r, t)(h̄ω(0)/g0)
−1/(2n)/Ψ0, where Ψ0 is chosen

so as to make φ(0,0) = 1. Then Eq. (1) reduces to the dimen-
sionless equation

(2)−∇2
xφ + 1

4
Ω2(τ )x2φ + g(τ)Ψ 2n

0 |φ|2nφ = i
∂φ

∂τ
,

when the number of the atoms in the condensed state in d di-
mensions is proportional to the quantity N = ∫

ddx |φ|2. Let
us now perform a pseudoconformal transformation (also called
lens transformation) on the wavefunction [9]:

(3)x′ = x/	(τ),

(4)τ ′ =
τ∫

0

1

	2(η)
dη,

(5)γ (τ) = 1

4	(τ)

d	

dτ
,

(6)φ(x, τ ) = 	−d/2(τ )χ(x′, τ ′)eiγ (τ)x2
,

where 	(τ) is an arbitrary function that satisfies the initial con-
dition 	(0) = 1 and d is the number of dimensions. Note also
that the transformed wavefunction χ satisfies the initial condi-
tion χ(0,0) = 1.

We can rewrite the dimensionless GP Eq. (2) in terms of the
new spatial and temporal variables x′ and τ ′:

(7)−∇2
x′χ + 1

4
Ω2

effx
′2χ + geffΨ

2n
0 |χ |2nχ = i

∂χ

∂τ ′ ,

where

(8)Ω2
eff = Ω2(τ )	4(τ ) + 	3(τ )

d2	

dτ 2

and

(9)geff = g(τ)	2−nd(τ ).

Thus the transformed wavefunction χ(x′, τ ′) obeys a GP equa-
tion for a trap with an effective frequency Ωeff and an effective
nonlinearity geff.

This very interesting transformation property has been used
before in order to describe the coherent evolution of the con-
densate [10] and, in particular, to provide the generalization
of the Thomas–Fermi approximation for condensates in time-
dependent traps [11]. It shows that, for the case nd = 2 and
g(τ) = 1, we can choose the arbitrary scaling function 	(τ) so
as to make Ωeff = 1, in which case the problem in the x′ and τ ′
variables reduces to the solution of the equation for a static par-
abolic potential of frequency 1. Thus, in this case, a complete
description for the space–time evolution at an arbitrary varia-
tion of Ω(τ) can be achieved, provided we have the solution of
the static problem [12].

The transformed equation, Eq. (7), can also be used in a dif-
ferent way. Instead of selecting the scaling function 	(τ) so as
to make Ωeff = 1, we could select it so as to make geff = 1, thus
reducing a problem with a time-dependent nonlinearity into a
problem with a constant nonlinearity. We shall not examine this
possibility any further, though, and we shall assume that the
nonlinearity g(τ) is equal to 1 from now on.

This transformed Eq. (7), which has been used not only for
Bose–Einstein condensates but in other areas of physics as well
[13], will yield analytic expressions then, provided we can find
analytic expressions for the static problem. This is feasible in
the context of the Thomas–Fermi approximation, where we as-
sume that the kinetic energy is negligible and we thus drop the
∇2 term, or in variational treatments, which give a good qualita-
tive description, though not quantitatively reliable. It is also fea-
sible if we emulate the ground state of the condensate, in which
case the results agree perfectly with the numerical solutions [6].
We shall combine therefore the emulation of the ground state
for a static harmonic potential with the transformed GP Eq. (7),
in order to obtain simple and accurate analytic expressions for
the ground state wavefunction of the evolving condensate.

Let us then examine separately the amplitude and the phase
of χ(x′, τ ′):

(10)χ(x′, τ ′) = R(x′, τ ′)eiθ(x′,τ ′).
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